Xingyu Zou , Mengjun Pan , Yue Liu , Shuai Wang , Hongye Xu , Xiaoqin Chu
{"title":"Effects of co-exposure to microplastics and perfluorooctanoic acid on the Caco-2 cells","authors":"Xingyu Zou , Mengjun Pan , Yue Liu , Shuai Wang , Hongye Xu , Xiaoqin Chu","doi":"10.1016/j.tox.2025.154152","DOIUrl":null,"url":null,"abstract":"<div><div>As plastics are produced and used, humans are inevitably exposed to microplastics (MPs) on a daily basis. The pollution of MPs has aroused widespread human concern. Perfluorooctanoic acid (PFOA), a persistent organic pollutant (POP), can be adsorbed by microplastics and may exacerbate human health hazards. In this study, we investigated the effects of co-exposure of PET MPs and PFOA on the human intestinal tract in terms of both cytotoxicity and intestinal barrier through in vitro experiments. The results showed that PFOA induced cellular oxidative stress, mitochondrial dysfunction exerted cytotoxic effects, and inhibited tight junction (TJ) protein expression causing intestinal barrier damage. PET MPs can synergize with PFOA to exacerbate the deleterious effects on the intestinal tract by decreasing cell membrane permeability to increase PFOA accumulation in the cell and enhancing the ability of PFOA to inhibit zonula occludens-1 (ZO-1) proteins.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"515 ","pages":"Article 154152"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X2500109X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
As plastics are produced and used, humans are inevitably exposed to microplastics (MPs) on a daily basis. The pollution of MPs has aroused widespread human concern. Perfluorooctanoic acid (PFOA), a persistent organic pollutant (POP), can be adsorbed by microplastics and may exacerbate human health hazards. In this study, we investigated the effects of co-exposure of PET MPs and PFOA on the human intestinal tract in terms of both cytotoxicity and intestinal barrier through in vitro experiments. The results showed that PFOA induced cellular oxidative stress, mitochondrial dysfunction exerted cytotoxic effects, and inhibited tight junction (TJ) protein expression causing intestinal barrier damage. PET MPs can synergize with PFOA to exacerbate the deleterious effects on the intestinal tract by decreasing cell membrane permeability to increase PFOA accumulation in the cell and enhancing the ability of PFOA to inhibit zonula occludens-1 (ZO-1) proteins.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.