Thermal transport and bio-convection transport phenomenon in non-Newtonian couple stress model via OHAM through Darcy-Forchheimer porous medium

Q1 Mathematics
Muhammad Sohail , Syed Tehseen Abbas , Muhammad Hussain Ali , Ibrahim Mahariq
{"title":"Thermal transport and bio-convection transport phenomenon in non-Newtonian couple stress model via OHAM through Darcy-Forchheimer porous medium","authors":"Muhammad Sohail ,&nbsp;Syed Tehseen Abbas ,&nbsp;Muhammad Hussain Ali ,&nbsp;Ibrahim Mahariq","doi":"10.1016/j.padiff.2025.101173","DOIUrl":null,"url":null,"abstract":"<div><div>Throughout a Darcy-Forchheimer porous medium, the Optimal Homotopy Analysis Method (OHAM) is utilized in this work to investigate the combined impacts of heat transport and bio-convection in a non-Newtonian pair stress fluid. Enhancing efficiency in biomedical and engineering applications, the discoveries are important for comprehending heat and mass transport in intricate biological and industrial systems. By using a similarity transformation, the complex governing equations are transformed into nonlinear ordinary differential equations. The bioconvection microbe, temperature, velocity, and concentration are all displayed both analytically and visually. Variable thermal conductivity, diffusion coefficients, and a bio convection equation are also used to improve modeling accuracy. As the temperature exponent, time relaxation, and Prandtl number increase, the temperature field decreases. The concentration field is increased by the temperature exponent and enhanced thermophoresis.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101173"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout a Darcy-Forchheimer porous medium, the Optimal Homotopy Analysis Method (OHAM) is utilized in this work to investigate the combined impacts of heat transport and bio-convection in a non-Newtonian pair stress fluid. Enhancing efficiency in biomedical and engineering applications, the discoveries are important for comprehending heat and mass transport in intricate biological and industrial systems. By using a similarity transformation, the complex governing equations are transformed into nonlinear ordinary differential equations. The bioconvection microbe, temperature, velocity, and concentration are all displayed both analytically and visually. Variable thermal conductivity, diffusion coefficients, and a bio convection equation are also used to improve modeling accuracy. As the temperature exponent, time relaxation, and Prandtl number increase, the temperature field decreases. The concentration field is increased by the temperature exponent and enhanced thermophoresis.
非牛顿耦合应力模型在dcy - forchheimer多孔介质中的热输运和生物对流输运现象
在整个Darcy-Forchheimer多孔介质中,利用最优同伦分析方法(OHAM)研究了非牛顿对应力流体中热传递和生物对流的综合影响。提高生物医学和工程应用的效率,这些发现对于理解复杂的生物和工业系统中的热量和质量传递具有重要意义。通过相似变换,将复杂控制方程转化为非线性常微分方程。生物对流微生物、温度、速度和浓度均以分析和直观的方式显示。可变导热系数、扩散系数和生物对流方程也用于提高建模精度。随着温度指数、时间弛豫和普朗特数的增加,温度场减小。浓度场随着温度指数和热泳作用的增强而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信