Advances in piezotronics and piezo-phototronics of two-dimensional semiconductor materials

Chip Pub Date : 2025-01-30 DOI:10.1016/j.chip.2025.100131
Yitong Wang , Fangpei Li , Wenbo Peng , Yongning He
{"title":"Advances in piezotronics and piezo-phototronics of two-dimensional semiconductor materials","authors":"Yitong Wang ,&nbsp;Fangpei Li ,&nbsp;Wenbo Peng ,&nbsp;Yongning He","doi":"10.1016/j.chip.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>High-performance electronics and optoelectronics play vital roles in modern society, as they are the fundamental building blocks of functional devices and systems. Two-dimensional semiconductor materials (2D-SCMs) are potential candidates for high-performance electronics and optoelectronics due to their excellent physical, chemical, electrical, and photonic properties. Owing to their special crystalline structure, they also present unique piezoelectricity, which opens a new door to the innovative fields of piezotronics and piezo-phototronics. Piezotronics and piezo-phototronics utilize the piezoelectric polarization charges produced when the 2D-SCMs undergo externally applied strains/stresses to modulate the performance of 2D-SCMs-based electronics and optoelectronics. In this review, firstly, the growth methods and piezoelectric properties of 2D-SCMs are stated, and the mechanisms of piezotronics and piezo-phototronics are also introduced. Afterwards, the recent progress of piezotronics and piezo-phototronics in high-performance 2D-SMCs-based electronics and optoelectronics are systematically reviewed. In addition, the functional devices and systems based on the piezotronics and piezo-phototronics in 2D-SMCs have been summarized. Finally, the research progresses are summarized, and future perspectives are proposed.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S270947232500005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance electronics and optoelectronics play vital roles in modern society, as they are the fundamental building blocks of functional devices and systems. Two-dimensional semiconductor materials (2D-SCMs) are potential candidates for high-performance electronics and optoelectronics due to their excellent physical, chemical, electrical, and photonic properties. Owing to their special crystalline structure, they also present unique piezoelectricity, which opens a new door to the innovative fields of piezotronics and piezo-phototronics. Piezotronics and piezo-phototronics utilize the piezoelectric polarization charges produced when the 2D-SCMs undergo externally applied strains/stresses to modulate the performance of 2D-SCMs-based electronics and optoelectronics. In this review, firstly, the growth methods and piezoelectric properties of 2D-SCMs are stated, and the mechanisms of piezotronics and piezo-phototronics are also introduced. Afterwards, the recent progress of piezotronics and piezo-phototronics in high-performance 2D-SMCs-based electronics and optoelectronics are systematically reviewed. In addition, the functional devices and systems based on the piezotronics and piezo-phototronics in 2D-SMCs have been summarized. Finally, the research progresses are summarized, and future perspectives are proposed.
二维半导体材料的压电电子学和压电光电子学研究进展
高性能电子学和光电子学在现代社会中发挥着至关重要的作用,因为它们是功能器件和系统的基本组成部分。二维半导体材料(2d - scm)由于其优异的物理、化学、电学和光子特性而成为高性能电子学和光电子学的潜在候选者。由于其特殊的晶体结构,它们也呈现出独特的压电性,这为压电电子学和压电光电子学的创新领域打开了新的大门。压电电子学和压电光电子学利用2d - scm经受外部施加应变/应力时产生的压电极化电荷来调节基于2d - scm的电子学和光电子学的性能。本文首先介绍了2D-SCMs的生长方法和压电性能,并介绍了压电电子学和压电光电电子学的机理。随后,系统综述了压电电子学和压电光电子学在高性能二维smcs电子学和光电子学领域的最新进展。此外,对基于压电和压电光电子的二维smcs功能器件和系统进行了综述。最后,对研究进展进行了总结,并对未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信