Qinqiu Zhang , Yi Xu , Jingming Li , Wentao Gao , Shixiong Deng , Yaowen Liu , Qing Zhang , Derong Lin , Jiajun Lv , Ziting Xiong , Wen Qin
{"title":"Construction and dynamic in vitro digestive characteristics of whey protein/chlorogenic acid/high methoxy pectin water-in-oil-in-water emulsion","authors":"Qinqiu Zhang , Yi Xu , Jingming Li , Wentao Gao , Shixiong Deng , Yaowen Liu , Qing Zhang , Derong Lin , Jiajun Lv , Ziting Xiong , Wen Qin","doi":"10.1016/j.ijbiomac.2025.142956","DOIUrl":null,"url":null,"abstract":"<div><div>Chlorogenic acid (CGA), while exhibiting diverse bioactive properties, but poor bioavailability and application stability, encapsulation via emulsion delivery systems represents a promising strategy to enhance its bioavailability and achieve sustained-release kinetics. In this study, bovine whey protein (BWP), CGA and high-methoxyl pectin (PEC) formed the water-in-oil-in-water (W/O/W) emulsion through the two-step emulsification. All W/O/W emulsions showed superior particle size, absolute potential, stability, and antioxidants, especially the W/O/W emulsion of BWP: PEC = 1:5 (0.5 % BWP and 2.5 % PEC) had highest encapsulation efficiency (94.52 ± 0.57 %) of CGA and thermal stability, this is related to the strongest hydrogel properties and grafting degree (16.98 ± 1.17 %). Moreover, in dynamically simulated digestion, the hydrolysis of CGA in continuous gastrointestinal digestion was inhibited, demonstrated remarkable slow-release characteristics; and W/O/W emulsion with high pectin content (BWP: PEC = 1:5) demonstrated prolonged gastric retention (9.9 % residual at 90 min) and reduced proteolytic susceptibility (24.12 % digestibility after 3 h). Consequently, W/O/W emulsions stabilized by BWP-PEC complexes can be applied as a prospective delivery system for enhancing the stability, antioxidant and slow-release properties in vivo of CGA.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"309 ","pages":"Article 142956"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025035081","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorogenic acid (CGA), while exhibiting diverse bioactive properties, but poor bioavailability and application stability, encapsulation via emulsion delivery systems represents a promising strategy to enhance its bioavailability and achieve sustained-release kinetics. In this study, bovine whey protein (BWP), CGA and high-methoxyl pectin (PEC) formed the water-in-oil-in-water (W/O/W) emulsion through the two-step emulsification. All W/O/W emulsions showed superior particle size, absolute potential, stability, and antioxidants, especially the W/O/W emulsion of BWP: PEC = 1:5 (0.5 % BWP and 2.5 % PEC) had highest encapsulation efficiency (94.52 ± 0.57 %) of CGA and thermal stability, this is related to the strongest hydrogel properties and grafting degree (16.98 ± 1.17 %). Moreover, in dynamically simulated digestion, the hydrolysis of CGA in continuous gastrointestinal digestion was inhibited, demonstrated remarkable slow-release characteristics; and W/O/W emulsion with high pectin content (BWP: PEC = 1:5) demonstrated prolonged gastric retention (9.9 % residual at 90 min) and reduced proteolytic susceptibility (24.12 % digestibility after 3 h). Consequently, W/O/W emulsions stabilized by BWP-PEC complexes can be applied as a prospective delivery system for enhancing the stability, antioxidant and slow-release properties in vivo of CGA.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.