Ning Wu , Yinling He , Zhendong Sun , Shengnan Zhang , Xiaoxi Yang , Qian S. Liu , Qunfang Zhou , Guibin Jiang
{"title":"The environmental occurrence, human exposure, and toxicity of novel bisphenol S derivatives: A review","authors":"Ning Wu , Yinling He , Zhendong Sun , Shengnan Zhang , Xiaoxi Yang , Qian S. Liu , Qunfang Zhou , Guibin Jiang","doi":"10.1016/j.ecoenv.2025.118182","DOIUrl":null,"url":null,"abstract":"<div><div>Novel bisphenol S (BPS) derivatives are being increasingly utilized as substitutes to bisphenol A (BPA) and BPS in thermal receipts and other industrial or commercial products. In recent years, the environmental occurrence, human exposure, and toxicity of non-chlorinated and chlorinated BPS derivatives have been investigated in numerous studies. This review summarizes the state-of-art and new knowledge on these aspects and provides recommendations for future research directions. The environmental analysis showed that BPS derivatives have been widely detected in paper products, water, indoor dust, sediment, and municipal sewage sludge. Recent studies have also reported the presence of non-chlorinated BPS derivatives, such as benzenesulfonylbenzene (DDS) and 4-(4-propan-2-yloxyphenyl)sulfonylphenol (BPSIP), in human breast milk, urine, and the maternal−fetal−placental unit. Toxicological studies suggest that BPS derivatives may cause a series of toxic effects, including endocrine-disrupting effects, cytotoxicity, hepatotoxicity, developmental toxicity, and neurotoxicity, some of which have been shown to exhibit adverse effects similar to or even greater than those of BPS. Future studies should focus on elucidating environmental occurrences, half-lives, sources for human exposure, and potential transformation pathways of BPS derivatives, as well as their toxic effects and underlying mechanisms.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"296 ","pages":"Article 118182"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325005184","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Novel bisphenol S (BPS) derivatives are being increasingly utilized as substitutes to bisphenol A (BPA) and BPS in thermal receipts and other industrial or commercial products. In recent years, the environmental occurrence, human exposure, and toxicity of non-chlorinated and chlorinated BPS derivatives have been investigated in numerous studies. This review summarizes the state-of-art and new knowledge on these aspects and provides recommendations for future research directions. The environmental analysis showed that BPS derivatives have been widely detected in paper products, water, indoor dust, sediment, and municipal sewage sludge. Recent studies have also reported the presence of non-chlorinated BPS derivatives, such as benzenesulfonylbenzene (DDS) and 4-(4-propan-2-yloxyphenyl)sulfonylphenol (BPSIP), in human breast milk, urine, and the maternal−fetal−placental unit. Toxicological studies suggest that BPS derivatives may cause a series of toxic effects, including endocrine-disrupting effects, cytotoxicity, hepatotoxicity, developmental toxicity, and neurotoxicity, some of which have been shown to exhibit adverse effects similar to or even greater than those of BPS. Future studies should focus on elucidating environmental occurrences, half-lives, sources for human exposure, and potential transformation pathways of BPS derivatives, as well as their toxic effects and underlying mechanisms.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.