Proximal recursive generalized hyper-gradient descent method

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hao Zhang, Shuxia Lu
{"title":"Proximal recursive generalized hyper-gradient descent method","authors":"Hao Zhang,&nbsp;Shuxia Lu","doi":"10.1016/j.asoc.2025.113073","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the non-convex, non-smooth composite optimization problem. It consists of a non-convex loss function and a non-smooth regularizer function that admits a proximal mapping. However, the method is still limited in handling objective functions that involve non-smooth regularizer. How to determine the step size for solving composite optimization problems can be a challenge. To address this gap, we propose a recursive gradient descent algorithm using generalized hyper-gradient descent, named ProxSarah-GHD, which utilizes variance reduction techniques and provides update rules for adaptive step sizes. To improve its generalization in proximal gradient descent, a generalized variant of hyper-gradient descent, named <strong>G</strong>eneralized <strong>H</strong>yper-gradient <strong>D</strong>escent (GHD), is proposed in this paper. We prove that ProxSarah-GHD attains a linear convergence rate. Moreover, we provide the oracle complexity of ProxSarah-GHD as <span><math><mrow><mi>O</mi><mfenced><mrow><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></mfenced></mrow></math></span> and <span><math><mrow><mi>O</mi><mfenced><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>n</mi></mrow></mfenced></mrow></math></span> in the online setting and finite-sum setting, respectively. In addition, to avoid the trouble of manually adjusting the batch size, we develop a novel <strong>E</strong>xponentially <strong>I</strong>ncreasing <strong>M</strong>ini-batch scheme for ProxSarah-GHD, named ProxSarah-GHD-EIM. The theoretical analysis that shows ProxSarah-GHD-EIM achieves a linear convergence rate is also provided, and shows that its total complexity is <span><math><mrow><mi>O</mi><mfenced><mrow><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfenced></mrow></math></span> and <span><math><mrow><mi>O</mi><mfenced><mrow><mi>n</mi><mo>+</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo>+</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></mfenced></mrow></math></span> in the online setting and finite-sum setting, respectively. Numerical experiments on standard datasets verify the superiority of the ProxSarah-GHD over other methods. We further analyze the sensitivity of the ProxSarah-GHD-EIM to its hyperparameters, conducting experiments on standard datasets.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"175 ","pages":"Article 113073"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625003849","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the non-convex, non-smooth composite optimization problem. It consists of a non-convex loss function and a non-smooth regularizer function that admits a proximal mapping. However, the method is still limited in handling objective functions that involve non-smooth regularizer. How to determine the step size for solving composite optimization problems can be a challenge. To address this gap, we propose a recursive gradient descent algorithm using generalized hyper-gradient descent, named ProxSarah-GHD, which utilizes variance reduction techniques and provides update rules for adaptive step sizes. To improve its generalization in proximal gradient descent, a generalized variant of hyper-gradient descent, named Generalized Hyper-gradient Descent (GHD), is proposed in this paper. We prove that ProxSarah-GHD attains a linear convergence rate. Moreover, we provide the oracle complexity of ProxSarah-GHD as Oϵ3 and Onϵ2+n in the online setting and finite-sum setting, respectively. In addition, to avoid the trouble of manually adjusting the batch size, we develop a novel Exponentially Increasing Mini-batch scheme for ProxSarah-GHD, named ProxSarah-GHD-EIM. The theoretical analysis that shows ProxSarah-GHD-EIM achieves a linear convergence rate is also provided, and shows that its total complexity is Oϵ4+ϵ2 and On+ϵ4+ϵ2 in the online setting and finite-sum setting, respectively. Numerical experiments on standard datasets verify the superiority of the ProxSarah-GHD over other methods. We further analyze the sensitivity of the ProxSarah-GHD-EIM to its hyperparameters, conducting experiments on standard datasets.
近端递归广义超梯度下降法
本文重点研究非凸、非平滑复合优化问题。它由一个非凸损失函数和一个允许近似映射的非光滑正则函数组成。然而,该方法在处理涉及非光滑正则的目标函数时仍有局限。如何确定求解复合优化问题的步长是一个难题。针对这一缺陷,我们提出了一种使用广义超梯度下降的递归梯度下降算法,命名为 ProxSarah-GHD,它利用了方差缩小技术,并提供了自适应步长的更新规则。为了提高其在近似梯度下降算法中的普适性,本文提出了一种广义超梯度下降算法的变体,命名为广义超梯度下降算法(GHD)。我们证明 ProxSarah-GHD 达到了线性收敛率。此外,我们还提供了 ProxSarah-GHD 的甲骨文复杂度,在在线设置和有限求和设置中分别为 Oϵ-3 和 Onϵ-2+n。此外,为了避免手动调整批量大小的麻烦,我们为 ProxSarah-GHD 开发了一种新颖的指数递增迷你批量方案,命名为 ProxSarah-GHD-EIM。理论分析表明,ProxSarah-GHD-EIM 实现了线性收敛率,并表明在在线设置和有限求和设置中,其总复杂度分别为 Oϵ-4+ϵ-2 和 On+ϵ-4+ϵ-2。在标准数据集上进行的数值实验验证了 ProxSarah-GHD 优于其他方法。通过在标准数据集上进行实验,我们进一步分析了 ProxSarah-GHD-EIM 对其超参数的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信