Bi-phasic integrated silk fibroin/polycaprolactone scaffolds for osteochondral regeneration inspired by the native joint tissue and interface

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Zexing Zhang , Qingquan Dong , Zubing Li , Gu Cheng , Zhi Li
{"title":"Bi-phasic integrated silk fibroin/polycaprolactone scaffolds for osteochondral regeneration inspired by the native joint tissue and interface","authors":"Zexing Zhang ,&nbsp;Qingquan Dong ,&nbsp;Zubing Li ,&nbsp;Gu Cheng ,&nbsp;Zhi Li","doi":"10.1016/j.mtbio.2025.101737","DOIUrl":null,"url":null,"abstract":"<div><div>Osteochondral scaffolds designed with bi-phasic and multi-phasic have typically struggled with post-implantation delamination. To address this issue, we developed a novel integrated scaffold with natural and continuous interface and heterogeneous bilayer structure. Through layer-by-layer wet electrospinning, two-dimensional (2D) bi-layer integrated membranes of silk fibroin (SF) and polycaprolactone (PCL) were fabricated. These membranes were then transformed into three-dimensional (3D) scaffolds using a CO<sub>2</sub> gas foaming technique, followed by gelatin coating on the osteogenic layer to afford final bi-phasic porous scaffolds. <em>In vitro</em> studies indicated that the 3D scaffolds better-maintained cell phenotypes than conventional 2D electrospun films. Additionally, the 3D scaffolds showed superior cartilage repair and osteoinductivity potential, with increased subchondral bone volume and reduced defect area in rat osteochondral defects models at 12 weeks. Taken together, these gas-foamed scaffolds were a promising candidate for osteochondral regeneration.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101737"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425002960","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osteochondral scaffolds designed with bi-phasic and multi-phasic have typically struggled with post-implantation delamination. To address this issue, we developed a novel integrated scaffold with natural and continuous interface and heterogeneous bilayer structure. Through layer-by-layer wet electrospinning, two-dimensional (2D) bi-layer integrated membranes of silk fibroin (SF) and polycaprolactone (PCL) were fabricated. These membranes were then transformed into three-dimensional (3D) scaffolds using a CO2 gas foaming technique, followed by gelatin coating on the osteogenic layer to afford final bi-phasic porous scaffolds. In vitro studies indicated that the 3D scaffolds better-maintained cell phenotypes than conventional 2D electrospun films. Additionally, the 3D scaffolds showed superior cartilage repair and osteoinductivity potential, with increased subchondral bone volume and reduced defect area in rat osteochondral defects models at 12 weeks. Taken together, these gas-foamed scaffolds were a promising candidate for osteochondral regeneration.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信