Vaclav Janostik , Martin Cvek , Vladimir Pata , Vojtech Senkerik , Martin Ovsik
{"title":"Design and surface enhancement of ABS parts manufactured by Arburg plastic freeforming (APF) using chemical vapor treatment","authors":"Vaclav Janostik , Martin Cvek , Vladimir Pata , Vojtech Senkerik , Martin Ovsik","doi":"10.1016/j.matdes.2025.113940","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) has become a key technology for fabricating highly customized products without the need for specific tools. Despite the benefits, this technology has some limitations, such as a poor surface finish of the products. Chemical treatment methods have been proven effective for enhancement of surface finish. To this date, such treatments were applied to the objects manufactured by various AM methods, but there is no data available for the products manufactured by Arburg plastic freeforming (APF). The APF is a unique technique based on the deposition of tiny polymer droplets to build a final component directly from pellets. In this study, we investigate the effects of chemical treatment in hot acetone vapors on the surface roughness, (micro)mechanical properties, and optical and molecular changes of acrylonitrile butadiene styrene (ABS) samples produced by APF. The dynamics of the treatment process were studied as a function of exposure time to acetone vapors. The results showed that bulk mechanical properties were preserved, while significant changes occurred in the surface mechanics, specifically the indentation hardness. Along with the chemical treatment, the surface roughness exhibited nontrivial behavior but ultimately yielded a ∼ 90 % reduction after 35 s, texture homogenization with the simultaneous improvement in gloss, from 2.2 to 45 GU, and surface aesthetics. The surface finishing process was very fast and easily scalable, offering valuable information for the design of ABS products in industrial applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"253 ","pages":"Article 113940"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525003600","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has become a key technology for fabricating highly customized products without the need for specific tools. Despite the benefits, this technology has some limitations, such as a poor surface finish of the products. Chemical treatment methods have been proven effective for enhancement of surface finish. To this date, such treatments were applied to the objects manufactured by various AM methods, but there is no data available for the products manufactured by Arburg plastic freeforming (APF). The APF is a unique technique based on the deposition of tiny polymer droplets to build a final component directly from pellets. In this study, we investigate the effects of chemical treatment in hot acetone vapors on the surface roughness, (micro)mechanical properties, and optical and molecular changes of acrylonitrile butadiene styrene (ABS) samples produced by APF. The dynamics of the treatment process were studied as a function of exposure time to acetone vapors. The results showed that bulk mechanical properties were preserved, while significant changes occurred in the surface mechanics, specifically the indentation hardness. Along with the chemical treatment, the surface roughness exhibited nontrivial behavior but ultimately yielded a ∼ 90 % reduction after 35 s, texture homogenization with the simultaneous improvement in gloss, from 2.2 to 45 GU, and surface aesthetics. The surface finishing process was very fast and easily scalable, offering valuable information for the design of ABS products in industrial applications.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.