Navya Aggarwal, Shreya Gupta, Shinjini Sen, Tanmay J. Urs, Banashree Bondhopadhyay
{"title":"Nanostructured materials for breast cancer therapeutics enhancing drug delivery through nanofibers, nano-mesh, and nanoflowers","authors":"Navya Aggarwal, Shreya Gupta, Shinjini Sen, Tanmay J. Urs, Banashree Bondhopadhyay","doi":"10.1016/j.nxnano.2025.100159","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer drug delivery systems rely heavily on conventional routes of administration through adjuvant formulations. These systems have been under development for decades to deduce safer, bioavailable, specific, selective and efficacious modalities. Nanotechnology based drug delivery systems proposed to solve these issues, have led to a boom in nanoparticle based, liposomal, nanovesicles, nanocapsules, and similar provisions. The improvement of the existing available systems inspired biodegradable nanostructures such as nanofibers, nanomesh and nanoflowers. These structures provide better opportunities to improve targetability, bioavailability, better safety profiles. The platforms additionally facilitate controlled release of the loaded drugs. This minireview explores nanofibers, nanomesh and nanoflowers in breast cancer treatment as emerging nanostructures for delivery of chemotherapeutics. Nanofibers emulate the natural extracellular matrix which can be modified for biodegradability and tumor identification. Nanomesh provide large drug-antigen loading platform with interwoven strands.On the other hand, nanoflowers can be conveniently modulated to control the release of the drug. These nanostructures offer innovative solutions to the typical drawbacks of drug absorption, selectivity and delivery on tumor sight. In this minireview, we aim to comprehensively present how these nanostructures are created, address their mechanism of action and how they are developing the landscape of breast cancer drug delivery systems.The study prioritizes these nanostructures over their conventional counterparts due to their visible benefits while also addressing their limitations which should be further researched upon, for breast cancer therapeutics.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"8 ","pages":"Article 100159"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829525000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer drug delivery systems rely heavily on conventional routes of administration through adjuvant formulations. These systems have been under development for decades to deduce safer, bioavailable, specific, selective and efficacious modalities. Nanotechnology based drug delivery systems proposed to solve these issues, have led to a boom in nanoparticle based, liposomal, nanovesicles, nanocapsules, and similar provisions. The improvement of the existing available systems inspired biodegradable nanostructures such as nanofibers, nanomesh and nanoflowers. These structures provide better opportunities to improve targetability, bioavailability, better safety profiles. The platforms additionally facilitate controlled release of the loaded drugs. This minireview explores nanofibers, nanomesh and nanoflowers in breast cancer treatment as emerging nanostructures for delivery of chemotherapeutics. Nanofibers emulate the natural extracellular matrix which can be modified for biodegradability and tumor identification. Nanomesh provide large drug-antigen loading platform with interwoven strands.On the other hand, nanoflowers can be conveniently modulated to control the release of the drug. These nanostructures offer innovative solutions to the typical drawbacks of drug absorption, selectivity and delivery on tumor sight. In this minireview, we aim to comprehensively present how these nanostructures are created, address their mechanism of action and how they are developing the landscape of breast cancer drug delivery systems.The study prioritizes these nanostructures over their conventional counterparts due to their visible benefits while also addressing their limitations which should be further researched upon, for breast cancer therapeutics.