OsCERK1 Interacts with OsHPP08 to Regulate Copper Uptake and Blast Resistance in Rice

IF 5.6 2区 农林科学 Q1 AGRONOMY
Ya Chen , Zhiquan Liu , Linyin Yang , Wu Fujie , Zijian Cao , Huanbin Shi , Jiehua Qiu , Yanjun Kou
{"title":"OsCERK1 Interacts with OsHPP08 to Regulate Copper Uptake and Blast Resistance in Rice","authors":"Ya Chen ,&nbsp;Zhiquan Liu ,&nbsp;Linyin Yang ,&nbsp;Wu Fujie ,&nbsp;Zijian Cao ,&nbsp;Huanbin Shi ,&nbsp;Jiehua Qiu ,&nbsp;Yanjun Kou","doi":"10.1016/j.rsci.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The cell surface receptor chitin elicitor receptor kinase 1 (CERK1) is a well-known component of plant immunity. OsCERK1 is involved in regulating copper (Cu) uptake in rice, though the underlying mechanisms remain elusive. In this study, we identified proteins interacting with OsCERK1 and uncovered a novel heavy metal-associated domain-containing protein, OsHPP08. Our findings demonstrate that OsCERK1 phosphorylated and stabilized OsHPP08. Through structural analysis using AlphaFold, a yeast sensitivity assay of the Cu uptake-deficient yeast mutant, and Cu level measurements in <em>oshpp08</em> mutants and overexpression plants (<em>OsHPP08OE</em>), we revealed that OsHPP08 facilitated Cu uptake. Additionally, rice seedling infection assays demonstrated that OsHPP08 positively contributed to blast resistance, with both OsCERK1 and OsHPP08 being essential for Cu-modulated blast resistance. Further analyses suggested that OsCERK1 and OsHPP08 likely enhanced blast resistance by regulating the antioxidant system and increasing H<sub>2</sub>O<sub>2</sub> accumulation. In conclusion, OsCERK1 promoted Cu uptake by stabilizing OsHPP08, and together they contributed to Cu-modulated blast resistance, likely through the modulation of reactive oxygen species accumulation. These findings deepen our understanding of the intricate interplay between biotic and abiotic signals in rice.</div></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"32 2","pages":"Pages 203-216"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630825000137","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The cell surface receptor chitin elicitor receptor kinase 1 (CERK1) is a well-known component of plant immunity. OsCERK1 is involved in regulating copper (Cu) uptake in rice, though the underlying mechanisms remain elusive. In this study, we identified proteins interacting with OsCERK1 and uncovered a novel heavy metal-associated domain-containing protein, OsHPP08. Our findings demonstrate that OsCERK1 phosphorylated and stabilized OsHPP08. Through structural analysis using AlphaFold, a yeast sensitivity assay of the Cu uptake-deficient yeast mutant, and Cu level measurements in oshpp08 mutants and overexpression plants (OsHPP08OE), we revealed that OsHPP08 facilitated Cu uptake. Additionally, rice seedling infection assays demonstrated that OsHPP08 positively contributed to blast resistance, with both OsCERK1 and OsHPP08 being essential for Cu-modulated blast resistance. Further analyses suggested that OsCERK1 and OsHPP08 likely enhanced blast resistance by regulating the antioxidant system and increasing H2O2 accumulation. In conclusion, OsCERK1 promoted Cu uptake by stabilizing OsHPP08, and together they contributed to Cu-modulated blast resistance, likely through the modulation of reactive oxygen species accumulation. These findings deepen our understanding of the intricate interplay between biotic and abiotic signals in rice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rice Science
Rice Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍: Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信