Woo Gyun Shin, Jin Seok Lee, Young Chul Ju, Hey Mi Hwang, Suk Whan Ko
{"title":"Data preprocessing and machine learning method based on ameliorated mathematical models for inferring the power generation of photovoltaic system","authors":"Woo Gyun Shin, Jin Seok Lee, Young Chul Ju, Hey Mi Hwang, Suk Whan Ko","doi":"10.1016/j.enconman.2025.119793","DOIUrl":null,"url":null,"abstract":"<div><div>Countries worldwide are actively pursuing energy transition efforts to mitigate climate change and promote long-term sustainability. This transition involves shifting to carbon-free power sources, with solar energy playing a crucial role. As the installation of photovoltaic (PV) systems increases, the proportion of electricity these systems contribute to the power grid also rises. However, since weather conditions influence PV power generation, accurately inferring power output is essential for ensuring grid stability and assessing power generation efficiency. This paper presents a data preprocessing method for machine-learning regression models, utilizing a mathematical model to infer PV system power generation based on irradiance and module temperature data. The distinctiveness of the proposed method lies in its normalization process, where measured voltage and current values are divided by the corresponding values computed using the mathematical model. The proposed approach resulted in a highly accurate regression model, achieving coefficients of determination (R<sup>2</sup>) values of 0.9477, 0.9967, and 0.9969 for DC voltage, DC current, and AC power, respectively, along with normalized root mean squared error (NRMSE) values within 3%.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"333 ","pages":"Article 119793"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425003164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Countries worldwide are actively pursuing energy transition efforts to mitigate climate change and promote long-term sustainability. This transition involves shifting to carbon-free power sources, with solar energy playing a crucial role. As the installation of photovoltaic (PV) systems increases, the proportion of electricity these systems contribute to the power grid also rises. However, since weather conditions influence PV power generation, accurately inferring power output is essential for ensuring grid stability and assessing power generation efficiency. This paper presents a data preprocessing method for machine-learning regression models, utilizing a mathematical model to infer PV system power generation based on irradiance and module temperature data. The distinctiveness of the proposed method lies in its normalization process, where measured voltage and current values are divided by the corresponding values computed using the mathematical model. The proposed approach resulted in a highly accurate regression model, achieving coefficients of determination (R2) values of 0.9477, 0.9967, and 0.9969 for DC voltage, DC current, and AC power, respectively, along with normalized root mean squared error (NRMSE) values within 3%.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.