Frequency response data-based feedforward control strategy for ultra-precision tool servo diamond turning of freeform surfaces

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Hao Wu , YiXuan Meng , DingKun Meng , Rui Wang , ZhiWei Zhu , MingJun Ren , XinQuan Zhang , LiMin Zhu
{"title":"Frequency response data-based feedforward control strategy for ultra-precision tool servo diamond turning of freeform surfaces","authors":"Hao Wu ,&nbsp;YiXuan Meng ,&nbsp;DingKun Meng ,&nbsp;Rui Wang ,&nbsp;ZhiWei Zhu ,&nbsp;MingJun Ren ,&nbsp;XinQuan Zhang ,&nbsp;LiMin Zhu","doi":"10.1016/j.ymssp.2025.112706","DOIUrl":null,"url":null,"abstract":"<div><div>Tool servo diamond turning faces significant challenges when machining freeform surfaces at relatively high speeds, primarily due to tracking errors caused by the limited bandwidth of the servo axis. Integrating an additional feedforward controller with existing controllers is often necessary to enhance tracking performance. However, the design of a closed-loop inversion-based feedforward controller generally relies on an accurate transfer function of the controlled system, which is frequently compromised by unavoidable modeling errors. To address this issue, this paper proposes a novel frequency response data (FRD)-based feedforward control strategy for trajectory modification in tool servo diamond turning. This strategy directly utilizes the FRD to design a flexible-order finite impulse response filter that approximates the inverse behavior of the servo axis. A constrained optimization problem is formulated to obtain a flat amplitude and phase frequency response within the interested bandwidth, with the differential evolution algorithm adopted to determine the optimal filter parameters. Experimental validation on a commercial ultra-precision lathe confirms the effectiveness of the proposed strategy. Comparative results reveal a substantial enhancement in the form accuracy of the machined freeform surfaces, achieving a 70% reduction in the PV error and a 96% reduction in the RMS error compared to those obtained without the feedforward controller. The simplicity and efficiency of this strategy make it well-suited for industrial ultra-precision machining applications.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"232 ","pages":"Article 112706"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025004078","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tool servo diamond turning faces significant challenges when machining freeform surfaces at relatively high speeds, primarily due to tracking errors caused by the limited bandwidth of the servo axis. Integrating an additional feedforward controller with existing controllers is often necessary to enhance tracking performance. However, the design of a closed-loop inversion-based feedforward controller generally relies on an accurate transfer function of the controlled system, which is frequently compromised by unavoidable modeling errors. To address this issue, this paper proposes a novel frequency response data (FRD)-based feedforward control strategy for trajectory modification in tool servo diamond turning. This strategy directly utilizes the FRD to design a flexible-order finite impulse response filter that approximates the inverse behavior of the servo axis. A constrained optimization problem is formulated to obtain a flat amplitude and phase frequency response within the interested bandwidth, with the differential evolution algorithm adopted to determine the optimal filter parameters. Experimental validation on a commercial ultra-precision lathe confirms the effectiveness of the proposed strategy. Comparative results reveal a substantial enhancement in the form accuracy of the machined freeform surfaces, achieving a 70% reduction in the PV error and a 96% reduction in the RMS error compared to those obtained without the feedforward controller. The simplicity and efficiency of this strategy make it well-suited for industrial ultra-precision machining applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信