Efficient Ambient-All-Laser-Annealed Wide Bandgap Perovskite Solar Cells

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianpeng Yi, Christopher Bailey, Tik-Lun Leung, Runmin Tao, Guoliang Wang, Jueming Bing, Md Arafat Mahmud, David R. Mckenzie, Anita W. Y. Ho-Baillie
{"title":"Efficient Ambient-All-Laser-Annealed Wide Bandgap Perovskite Solar Cells","authors":"Jianpeng Yi,&nbsp;Christopher Bailey,&nbsp;Tik-Lun Leung,&nbsp;Runmin Tao,&nbsp;Guoliang Wang,&nbsp;Jueming Bing,&nbsp;Md Arafat Mahmud,&nbsp;David R. Mckenzie,&nbsp;Anita W. Y. Ho-Baillie","doi":"10.1002/adfm.202503971","DOIUrl":null,"url":null,"abstract":"<p>Wide bandgap (WBG) metal halide perovskite solar cells with high output voltages are critical for high efficiency multi-junction solar cells. This work demonstrates the first use of laser annealing in ambient for fabricating both the self-assembly molecular (SAM) hole transport layer (HTL) and the perovskite layer for 1.80 eV perovskite solar cells with impressive open circuit voltage (<i>V</i><sub>OC</sub>) and power conversion efficiency (PCE). The V<sub>OC</sub> of 1.35V and PCE of 19.8% produced by the champion cell are the highest-to-date for perovskite solar cells with the same bandgap. Notably, laser annealing reduces processing time to only 1 min each for the HTL and the perovskite layer compared to 10 min each for the HTL and the perovskite layer by hot-plate thermal annealing for the same device area. Additionally, laser annealing subjects the substrate to lower temperature than hot-plate annealing. Macroscopic and localized temperature profiles generated by laser annealing were modeled by a 3D finite element analysis for the first time unveiling effective laser power absorption and cooling by the perovskite film compared to Me-4PACz and unveiling heat transport to the rest of the substrate during laser scanning. This work demonstrates promising prospects of laser annealing for future mass production of perovskite solar cells especially on temperature-sensitive substrates.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 37","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202503971","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202503971","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wide bandgap (WBG) metal halide perovskite solar cells with high output voltages are critical for high efficiency multi-junction solar cells. This work demonstrates the first use of laser annealing in ambient for fabricating both the self-assembly molecular (SAM) hole transport layer (HTL) and the perovskite layer for 1.80 eV perovskite solar cells with impressive open circuit voltage (VOC) and power conversion efficiency (PCE). The VOC of 1.35V and PCE of 19.8% produced by the champion cell are the highest-to-date for perovskite solar cells with the same bandgap. Notably, laser annealing reduces processing time to only 1 min each for the HTL and the perovskite layer compared to 10 min each for the HTL and the perovskite layer by hot-plate thermal annealing for the same device area. Additionally, laser annealing subjects the substrate to lower temperature than hot-plate annealing. Macroscopic and localized temperature profiles generated by laser annealing were modeled by a 3D finite element analysis for the first time unveiling effective laser power absorption and cooling by the perovskite film compared to Me-4PACz and unveiling heat transport to the rest of the substrate during laser scanning. This work demonstrates promising prospects of laser annealing for future mass production of perovskite solar cells especially on temperature-sensitive substrates.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

高效环境全激光退火宽禁带钙钛矿太阳能电池
具有高输出电压的宽禁带金属卤化物钙钛矿太阳能电池是实现高效多结太阳能电池的关键。本研究首次在室温下使用激光退火技术制备自组装分子(SAM)空穴传输层(HTL)和钙钛矿层,用于具有令人印象深刻的开路电压(VOC)和功率转换效率(PCE)的1.80 eV钙钛矿太阳能电池。冠军电池产生的VOC为1.35V, PCE为19.8%,是迄今为止具有相同带隙的钙钛矿太阳能电池中最高的。值得注意的是,激光退火将HTL和钙钛矿层的加工时间分别缩短到1 min,而对于相同的器件面积,热板热退火的HTL和钙钛矿层的加工时间分别为10 min。此外,激光退火使衬底承受比热板退火更低的温度。通过三维有限元分析模拟了激光退火产生的宏观和局部温度分布,首次揭示了钙钛矿膜与Me-4PACz相比有效的激光功率吸收和冷却,并揭示了激光扫描过程中热量向衬底其他部分的传输。这项工作表明,激光退火技术在未来大规模生产钙钛矿太阳能电池,特别是在温度敏感衬底上的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信