Yosi Kratish, Yiqi Liu, Jiaqi Li, Anusheela Das, Leighton O. Jones, Amol Agarwal, Qing Ma, Michael J. Bedzyk, George C. Schatz, Takayuki Nakamuro, Eiichi Nakamura, Tobin J. Marks
{"title":"Atomic-resolution imaging as a mechanistic tool for studying single-site heterogeneous catalysis","authors":"Yosi Kratish, Yiqi Liu, Jiaqi Li, Anusheela Das, Leighton O. Jones, Amol Agarwal, Qing Ma, Michael J. Bedzyk, George C. Schatz, Takayuki Nakamuro, Eiichi Nakamura, Tobin J. Marks","doi":"10.1016/j.chempr.2025.102541","DOIUrl":null,"url":null,"abstract":"Heterogeneous catalysts dominate the chemical industry but, unlike homogeneous catalysts, typically feature diverse, incompletely defined active sites. Thus, describing their structure-activity relationships remains challenging. In contrast, molecularly defined single-site heterogeneous catalysts (SSHCs) are poised to address these challenges and provide new avenues for catalysis research and development. The present study explores eco-friendly H<sub>2</sub> production mediated by discrete MoO<sub>2</sub> sites supported on carbon nanohorns (CNHs) and active for alcohol dehydrogenation. Although informative, detailed extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES), X-ray photoelectron spectroscopy (XPS,) kinetic measurements, and density functional theory (DFT) analysis alone cannot provide a full molecular picture of the reaction pathway. Here, using single-molecule atomic-resolution time-resolved electron microscopy (SMART-EM), we propose the identification of four key catalytic intermediates anchored to CNHs and uncover a new reaction pathway involving alkoxide/hemiacetal equilibration and acetal oligomerization. These intermediates are inferred through a combination of theory and SMART-EM, showcasing the potential of SMART-EM as a complementary tool for exploring mechanistic hypotheses in catalysis.","PeriodicalId":268,"journal":{"name":"Chem","volume":"108 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102541","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous catalysts dominate the chemical industry but, unlike homogeneous catalysts, typically feature diverse, incompletely defined active sites. Thus, describing their structure-activity relationships remains challenging. In contrast, molecularly defined single-site heterogeneous catalysts (SSHCs) are poised to address these challenges and provide new avenues for catalysis research and development. The present study explores eco-friendly H2 production mediated by discrete MoO2 sites supported on carbon nanohorns (CNHs) and active for alcohol dehydrogenation. Although informative, detailed extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES), X-ray photoelectron spectroscopy (XPS,) kinetic measurements, and density functional theory (DFT) analysis alone cannot provide a full molecular picture of the reaction pathway. Here, using single-molecule atomic-resolution time-resolved electron microscopy (SMART-EM), we propose the identification of four key catalytic intermediates anchored to CNHs and uncover a new reaction pathway involving alkoxide/hemiacetal equilibration and acetal oligomerization. These intermediates are inferred through a combination of theory and SMART-EM, showcasing the potential of SMART-EM as a complementary tool for exploring mechanistic hypotheses in catalysis.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.