{"title":"An erythroid-biased FOShi hematopoietic multipotent progenitor subpopulation contributes to adaptation to chronic hypoxia","authors":"Weili Liu, Xiaoru Zhang, Jinhua Liu, Lingling Pu, Lanlan Ai, Hongbao Xu, Guangrui Wang, Ding Wang, Xiaona Song, Yingnan Zhang, Ling Zhang, Jie Gao, Xiaoling Cheng, Xinxing Wang, Jingyuan Tong, Xiaowei Xie, Fang Dong, Yingchi Zhang, Ping Zhu, Zhaoli Chen, Lihong Shi","doi":"10.1016/j.stem.2025.03.010","DOIUrl":null,"url":null,"abstract":"Hypoxia imposes notable stress on organisms and even causes tissue damage; however, the cellular and molecular mechanisms underlying hypoxic adaptation and maladaptation are elusive. Here, we performed single-cell RNA sequencing to analyze hematopoietic stem and progenitor cells (HSPCs) and erythroid cells in a mouse model of high-altitude polycythemia (HAPC) mimicking long-term high-altitude hypoxia exposure. We identified a distinct erythroid-biased multipotent progenitor subset, FOS<sup>hi</sup> MPP, characterized by a unique responsiveness to interferon (IFN) signaling, which expands under hypoxia conditions. This subset rapidly responds to hypoxia during re-ascent by sustaining low methylation of erythroid-priming genes, suggesting a memory function in HSPCs for faster acclimatization. Additionally, erythroid cells in HAPC mice had active metabolic and autophagic activity, as well as abundant CD47 expression that prevented the phagocytosis of erythrocytes. Finally, CD47 blockade and/or IFNα treatments alleviated erythrocytosis in HAPC mice. These approaches might constitute promising therapeutic strategies for HAPC.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"25 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.03.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Hypoxia imposes notable stress on organisms and even causes tissue damage; however, the cellular and molecular mechanisms underlying hypoxic adaptation and maladaptation are elusive. Here, we performed single-cell RNA sequencing to analyze hematopoietic stem and progenitor cells (HSPCs) and erythroid cells in a mouse model of high-altitude polycythemia (HAPC) mimicking long-term high-altitude hypoxia exposure. We identified a distinct erythroid-biased multipotent progenitor subset, FOShi MPP, characterized by a unique responsiveness to interferon (IFN) signaling, which expands under hypoxia conditions. This subset rapidly responds to hypoxia during re-ascent by sustaining low methylation of erythroid-priming genes, suggesting a memory function in HSPCs for faster acclimatization. Additionally, erythroid cells in HAPC mice had active metabolic and autophagic activity, as well as abundant CD47 expression that prevented the phagocytosis of erythrocytes. Finally, CD47 blockade and/or IFNα treatments alleviated erythrocytosis in HAPC mice. These approaches might constitute promising therapeutic strategies for HAPC.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.