{"title":"Comparison of Realistic and Slit Models of Activated Carbon for Xe/Kr Separation","authors":"Xuan Peng","doi":"10.1021/acs.iecr.5c00118","DOIUrl":null,"url":null,"abstract":"This study compares the adsorption and separation performance of Xe/Kr mixtures in realistic and slit pore models of activated carbon using Grand Canonical Ensemble Monte Carlo (GCMC) simulations. The hybrid Reverse Monte Carlo (HRMC) model and slit pore structures exhibit distinct adsorption behaviors influenced by pore size, pressure, and temperature. For pure Xe and Kr, adsorption heats in the HRMC model range from 12 to 20 kJ/mol for Kr and 15 to 25 kJ/mol for Xe. At 1 MPa, cs1000a achieves the highest adsorption capacities for Kr and Xe, 1.93 and 3.84 mmol/g, respectively. In slit pores, the Xe/Kr selectivity peaks at 32 for 0.8 nm pores at 0.1 MPa and decreases with pressure and pore size. The 1.1 nm slit pore at 1.0 MPa and 238 K achieves a maximum Xe adsorption capacity and selectivity of 14. Local density analyses confirm selective Xe adsorption in narrow pores, with enhanced multilayer adsorption in larger pores. Compared to the HRMC model, slit pores exhibit higher adsorption heat and steeper isotherms, indicating stronger interactions. This study highlights the importance of pore structure in designing activated carbons for Xe/Kr separation, recommending operating conditions of 1.1 nm pore width, 238 K, and 1.0 MPa for optimal separation performance.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"14 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c00118","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study compares the adsorption and separation performance of Xe/Kr mixtures in realistic and slit pore models of activated carbon using Grand Canonical Ensemble Monte Carlo (GCMC) simulations. The hybrid Reverse Monte Carlo (HRMC) model and slit pore structures exhibit distinct adsorption behaviors influenced by pore size, pressure, and temperature. For pure Xe and Kr, adsorption heats in the HRMC model range from 12 to 20 kJ/mol for Kr and 15 to 25 kJ/mol for Xe. At 1 MPa, cs1000a achieves the highest adsorption capacities for Kr and Xe, 1.93 and 3.84 mmol/g, respectively. In slit pores, the Xe/Kr selectivity peaks at 32 for 0.8 nm pores at 0.1 MPa and decreases with pressure and pore size. The 1.1 nm slit pore at 1.0 MPa and 238 K achieves a maximum Xe adsorption capacity and selectivity of 14. Local density analyses confirm selective Xe adsorption in narrow pores, with enhanced multilayer adsorption in larger pores. Compared to the HRMC model, slit pores exhibit higher adsorption heat and steeper isotherms, indicating stronger interactions. This study highlights the importance of pore structure in designing activated carbons for Xe/Kr separation, recommending operating conditions of 1.1 nm pore width, 238 K, and 1.0 MPa for optimal separation performance.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.