Experimental study and mechanism analysis of coal spontaneous combustion inhibition based on oxidation characteristics of key coal reaction groups

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Xun Zhang , Chen Yu , Bing Lu , Gang Bai , Huimin Liang , Jieyu Li
{"title":"Experimental study and mechanism analysis of coal spontaneous combustion inhibition based on oxidation characteristics of key coal reaction groups","authors":"Xun Zhang ,&nbsp;Chen Yu ,&nbsp;Bing Lu ,&nbsp;Gang Bai ,&nbsp;Huimin Liang ,&nbsp;Jieyu Li","doi":"10.1016/j.ces.2025.121656","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the staged oxidation development process dominated by the temperature node of coal itself, the correlation contribution of the staged oxidation reaction of key active groups is thoroughly analyzed. The mathematical relationship between macroscopic gas characteristics and microscopic active groups of different coal samples was established. The exothermic mechanism of the self-reaction associated with the key active groups during the staged oxidation of coal was investigated using quantum chemical calculations. The performance of inhibitors is significantly diminished during the latent development stage of coal. The key temperature node accelerates the desorption of crystal water from the physical inhibitor, enabling it to act more effectively on the coal body. Meanwhile, the chemical antioxidant becomes more active in quenching and capturing key active groups, thereby inhibiting the chain reaction process and the release of heat from self-reactions. The critical temperature inhibition method ensures a more comprehensive suppression of coal oxidation at key stages. The research provides valuable insights and data support for enhancing the safety of coal storage and transportation.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"312 ","pages":"Article 121656"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925004798","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the staged oxidation development process dominated by the temperature node of coal itself, the correlation contribution of the staged oxidation reaction of key active groups is thoroughly analyzed. The mathematical relationship between macroscopic gas characteristics and microscopic active groups of different coal samples was established. The exothermic mechanism of the self-reaction associated with the key active groups during the staged oxidation of coal was investigated using quantum chemical calculations. The performance of inhibitors is significantly diminished during the latent development stage of coal. The key temperature node accelerates the desorption of crystal water from the physical inhibitor, enabling it to act more effectively on the coal body. Meanwhile, the chemical antioxidant becomes more active in quenching and capturing key active groups, thereby inhibiting the chain reaction process and the release of heat from self-reactions. The critical temperature inhibition method ensures a more comprehensive suppression of coal oxidation at key stages. The research provides valuable insights and data support for enhancing the safety of coal storage and transportation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信