Visible-Light-Driven Photocatalytic Methanol Activation on Hexagonal CdS for Triggering C–H Methylation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gang Chen, Lei Li, Yi Liu, Zhihao Li, Yanyun Hu, Hui Wang, Xiaodong Zhang, Yi Xie
{"title":"Visible-Light-Driven Photocatalytic Methanol Activation on Hexagonal CdS for Triggering C–H Methylation","authors":"Gang Chen, Lei Li, Yi Liu, Zhihao Li, Yanyun Hu, Hui Wang, Xiaodong Zhang, Yi Xie","doi":"10.1002/anie.202507093","DOIUrl":null,"url":null,"abstract":"Light-driven methanol activation paves the way for pursuing C–H methylation of N-heteroarenes, where selectively converting methanol into the corresponding hydroxymethyl radical (•CH2OH) is an essential prerequisite. Inspired by the versatile methanol activation on photoexcited solids, we here report a practicable semiconductor-based photocatalytic system for C–H methylation of N-heteroarenes. To be specific, hexagonal cadmium sulfide (h-CdS) was identified to be an ideal platform for visible-light-driven photocatalytic methanol activation, where selective •CH2OH generation undergoing a hole-transfer process without any additional co-catalysts or co-solvent could trigger C–H hydroxymethylation of N-heteroarenes. The following electron transfer between photoexcited h-CdS and hydroxymethylated intermediates could finally lead to the formation of methylated N-heteroarenes. The transformations facilitate the cascade utilization of photoinduced hole and electron, thereby endowing h-CdS with extraordinary photocatalytic performance. Besides, selective generation of hydroxymethylated/methylated product could be facilely implemented in the presence/absence of electron scavengers.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"14 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202507093","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Light-driven methanol activation paves the way for pursuing C–H methylation of N-heteroarenes, where selectively converting methanol into the corresponding hydroxymethyl radical (•CH2OH) is an essential prerequisite. Inspired by the versatile methanol activation on photoexcited solids, we here report a practicable semiconductor-based photocatalytic system for C–H methylation of N-heteroarenes. To be specific, hexagonal cadmium sulfide (h-CdS) was identified to be an ideal platform for visible-light-driven photocatalytic methanol activation, where selective •CH2OH generation undergoing a hole-transfer process without any additional co-catalysts or co-solvent could trigger C–H hydroxymethylation of N-heteroarenes. The following electron transfer between photoexcited h-CdS and hydroxymethylated intermediates could finally lead to the formation of methylated N-heteroarenes. The transformations facilitate the cascade utilization of photoinduced hole and electron, thereby endowing h-CdS with extraordinary photocatalytic performance. Besides, selective generation of hydroxymethylated/methylated product could be facilely implemented in the presence/absence of electron scavengers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信