Guangwen Zhang, Deyuan Li, Dongfang Yu, Ao Du, Zihui Chen, Huilin Ge, Weiqi Hou, Yizhou Zhu, Chunpeng Yang
{"title":"Stabilizing Halide Electrolytes against Lithium Metal with a Self-Limiting Layer for All-Solid-State Lithium Metal Batteries","authors":"Guangwen Zhang, Deyuan Li, Dongfang Yu, Ao Du, Zihui Chen, Huilin Ge, Weiqi Hou, Yizhou Zhu, Chunpeng Yang","doi":"10.1021/acsnano.4c18584","DOIUrl":null,"url":null,"abstract":"Halide solid-state electrolytes (SSEs) with high ionic conductivity and high-voltage stability have attracted significant interest for application in all-solid-state batteries. However, they are not chemically stable against the lithium (Li) metal anode due to continuous side reduction reactions, hindering the application of halide SSEs in high-energy-density all-solid-state Li metal batteries (ASSLMBs). Here, we report a self-limiting layer (SLL) composed of InF<sub>3</sub> and Li<sub>2</sub>ZrCl<sub>6</sub> (LZC) to stabilize the halide SSEs and Li metal anode interface, where the in situ generated LiF-rich layer serves as a passivation layer to suppress ensuing reactions and kinetically stabilize the interface between LZC and Li metal anode. As a result, Li metal symmetric cells with LZC protected by the SLL exhibit excellent cycling performance for over 3000 h. The ASSLMBs with SLL achieve 99.2% capacity retention over 100 cycles at 0.5 C and 83.5% capacity retention after 250 cycles at 2 C. Density functional theory-computed thermodynamic data and postcycling experimental characterizations confirm the forming of a LiF-rich passivation layer between the SLL and the Li anode, which effectively prevents continuous side reactions. This self-limiting interface protection offers a feasible kinetical passivation strategy for halide SSEs and the Li metal anode toward high-performance ASSLMBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"95 2 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18584","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Halide solid-state electrolytes (SSEs) with high ionic conductivity and high-voltage stability have attracted significant interest for application in all-solid-state batteries. However, they are not chemically stable against the lithium (Li) metal anode due to continuous side reduction reactions, hindering the application of halide SSEs in high-energy-density all-solid-state Li metal batteries (ASSLMBs). Here, we report a self-limiting layer (SLL) composed of InF3 and Li2ZrCl6 (LZC) to stabilize the halide SSEs and Li metal anode interface, where the in situ generated LiF-rich layer serves as a passivation layer to suppress ensuing reactions and kinetically stabilize the interface between LZC and Li metal anode. As a result, Li metal symmetric cells with LZC protected by the SLL exhibit excellent cycling performance for over 3000 h. The ASSLMBs with SLL achieve 99.2% capacity retention over 100 cycles at 0.5 C and 83.5% capacity retention after 250 cycles at 2 C. Density functional theory-computed thermodynamic data and postcycling experimental characterizations confirm the forming of a LiF-rich passivation layer between the SLL and the Li anode, which effectively prevents continuous side reactions. This self-limiting interface protection offers a feasible kinetical passivation strategy for halide SSEs and the Li metal anode toward high-performance ASSLMBs.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.