Stabilizing Halide Electrolytes against Lithium Metal with a Self-Limiting Layer for All-Solid-State Lithium Metal Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-11 DOI:10.1021/acsnano.4c18584
Guangwen Zhang, Deyuan Li, Dongfang Yu, Ao Du, Zihui Chen, Huilin Ge, Weiqi Hou, Yizhou Zhu, Chunpeng Yang
{"title":"Stabilizing Halide Electrolytes against Lithium Metal with a Self-Limiting Layer for All-Solid-State Lithium Metal Batteries","authors":"Guangwen Zhang, Deyuan Li, Dongfang Yu, Ao Du, Zihui Chen, Huilin Ge, Weiqi Hou, Yizhou Zhu, Chunpeng Yang","doi":"10.1021/acsnano.4c18584","DOIUrl":null,"url":null,"abstract":"Halide solid-state electrolytes (SSEs) with high ionic conductivity and high-voltage stability have attracted significant interest for application in all-solid-state batteries. However, they are not chemically stable against the lithium (Li) metal anode due to continuous side reduction reactions, hindering the application of halide SSEs in high-energy-density all-solid-state Li metal batteries (ASSLMBs). Here, we report a self-limiting layer (SLL) composed of InF<sub>3</sub> and Li<sub>2</sub>ZrCl<sub>6</sub> (LZC) to stabilize the halide SSEs and Li metal anode interface, where the in situ generated LiF-rich layer serves as a passivation layer to suppress ensuing reactions and kinetically stabilize the interface between LZC and Li metal anode. As a result, Li metal symmetric cells with LZC protected by the SLL exhibit excellent cycling performance for over 3000 h. The ASSLMBs with SLL achieve 99.2% capacity retention over 100 cycles at 0.5 C and 83.5% capacity retention after 250 cycles at 2 C. Density functional theory-computed thermodynamic data and postcycling experimental characterizations confirm the forming of a LiF-rich passivation layer between the SLL and the Li anode, which effectively prevents continuous side reactions. This self-limiting interface protection offers a feasible kinetical passivation strategy for halide SSEs and the Li metal anode toward high-performance ASSLMBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"95 2 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18584","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Halide solid-state electrolytes (SSEs) with high ionic conductivity and high-voltage stability have attracted significant interest for application in all-solid-state batteries. However, they are not chemically stable against the lithium (Li) metal anode due to continuous side reduction reactions, hindering the application of halide SSEs in high-energy-density all-solid-state Li metal batteries (ASSLMBs). Here, we report a self-limiting layer (SLL) composed of InF3 and Li2ZrCl6 (LZC) to stabilize the halide SSEs and Li metal anode interface, where the in situ generated LiF-rich layer serves as a passivation layer to suppress ensuing reactions and kinetically stabilize the interface between LZC and Li metal anode. As a result, Li metal symmetric cells with LZC protected by the SLL exhibit excellent cycling performance for over 3000 h. The ASSLMBs with SLL achieve 99.2% capacity retention over 100 cycles at 0.5 C and 83.5% capacity retention after 250 cycles at 2 C. Density functional theory-computed thermodynamic data and postcycling experimental characterizations confirm the forming of a LiF-rich passivation layer between the SLL and the Li anode, which effectively prevents continuous side reactions. This self-limiting interface protection offers a feasible kinetical passivation strategy for halide SSEs and the Li metal anode toward high-performance ASSLMBs.

Abstract Image

全固态锂金属电池用自限制层稳定卤化物电解质对锂金属的影响
卤化物固态电解质具有高离子电导率和高电压稳定性,在全固态电池中的应用备受关注。然而,由于持续的侧还原反应,它们对锂(Li)金属阳极的化学稳定性不高,阻碍了卤化物ssi在高能量密度全固态锂金属电池(asslmb)中的应用。在这里,我们报道了一个由InF3和Li2ZrCl6 (LZC)组成的自限层(SLL)来稳定卤化物sse和Li金属阳极界面,其中原位生成的富lif层作为钝化层来抑制随后的反应,并在动力学上稳定LZC和Li金属阳极之间的界面。结果表明,具有SLL保护的LZC的锂金属对称电池具有超过3000 h的优异循环性能。具有SLL的asslmb在0.5 C下循环100次后的容量保持率为99.2%,在2c下循环250次后的容量保持率为83.5%。密度函数理论计算的热力学数据和循环后的实验表征证实了SLL和Li阳极之间形成了富liff钝化层,有效地防止了连续的副反应。这种自限制界面保护为卤化物sse和锂金属阳极向高性能asslmb提供了一种可行的动力学钝化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信