Renormalisation in maximally symmetric spaces and semiclassical gravity in Anti-de Sitter spacetime

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Benito A Juárez-Aubry and Milton C Mamani-Leqque
{"title":"Renormalisation in maximally symmetric spaces and semiclassical gravity in Anti-de Sitter spacetime","authors":"Benito A Juárez-Aubry and Milton C Mamani-Leqque","doi":"10.1088/1361-6382/adc535","DOIUrl":null,"url":null,"abstract":"We obtain semiclassical gravity solutions in the Poincaré fundamental domain of -dimensional Anti-de Sitter spacetime, PAdS4, with a (massive or massless) Klein–Gordon field (with possibly non-trivial curvature coupling) with Dirichlet or Neumann boundary. Some results are explicitly and graphically presented for special values of the mass and curvature coupling (e.g. minimal or conformal coupling). In order to achieve this, we study in some generality how to perform the Hadamard renormalisation procedure for non-linear observables in maximally symmetric spacetimes in arbitrary dimensions, with emphasis on the stress-energy tensor. We show that, in this maximally symmetric setting, the Hadamard bi-distribution is invariant under the isometries of the spacetime, and can be seen as a ‘single-argument’ distribution depending only on the geodesic distance, which significantly simplifies the Hadamard recursion relations and renormalisation computations.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"108 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adc535","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain semiclassical gravity solutions in the Poincaré fundamental domain of -dimensional Anti-de Sitter spacetime, PAdS4, with a (massive or massless) Klein–Gordon field (with possibly non-trivial curvature coupling) with Dirichlet or Neumann boundary. Some results are explicitly and graphically presented for special values of the mass and curvature coupling (e.g. minimal or conformal coupling). In order to achieve this, we study in some generality how to perform the Hadamard renormalisation procedure for non-linear observables in maximally symmetric spacetimes in arbitrary dimensions, with emphasis on the stress-energy tensor. We show that, in this maximally symmetric setting, the Hadamard bi-distribution is invariant under the isometries of the spacetime, and can be seen as a ‘single-argument’ distribution depending only on the geodesic distance, which significantly simplifies the Hadamard recursion relations and renormalisation computations.
最大对称空间中的重整化与反德西特时空中的半经典引力
我们在具有Dirichlet或Neumann边界的(有质量或无质量的)Klein-Gordon场(可能具有非平凡曲率耦合)的一维反德西特时空(PAdS4)的poincar基本域中获得了半经典引力解。对于质量和曲率耦合的特殊值(例如最小或保形耦合),一些结果被明确和图形化地呈现。为了实现这一点,我们在一定程度上研究了如何对任意维的最大对称时空中的非线性可观测值执行Hadamard重整化过程,重点是应力-能量张量。我们证明,在这种最大对称设置下,Hadamard双分布在时空等距下是不变的,并且可以被视为仅依赖于测地线距离的“单参数”分布,这极大地简化了Hadamard递归关系和重正化计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信