Ji Eun Kim , Suman Hu , Ju Young Kwon , Suk Yeop Chun , Keunho Soh , Hwanhui Yun , Seung-Hyub Baek , Sahn Nahm , Yeon Joo Jeong , Jung Ho Yoon
{"title":"Cluster-type conductive path-based selector-less 1R memristor array for spiking neural networks","authors":"Ji Eun Kim , Suman Hu , Ju Young Kwon , Suk Yeop Chun , Keunho Soh , Hwanhui Yun , Seung-Hyub Baek , Sahn Nahm , Yeon Joo Jeong , Jung Ho Yoon","doi":"10.1016/j.nanoen.2025.110983","DOIUrl":null,"url":null,"abstract":"<div><div>Memristors hold great promise as next-generation devices, but their practical application faces challenges such as achieving low power consumption, multi-level resistance states, and efficient crossbar array construction. The switching characteristics and performance of memristors depend largely on the mobile species and the matrix through which they move, yet controlling ion dynamics remains difficult. In this study, we employed ruthenium (Ru) as the active electrode and utilized a SiO<sub>2</sub> matrix in a nanorod structure, which reduces the activation energy for Ru ion diffusion and enhances redox reactions. Precise control of Ru ion dynamics enabled us to develop novel conduction paths and mechanisms. The Pt/SiO<sub>2</sub> nanorods/Ru structure exhibits improved switching characteristics, including electroforming-free operation, low power consumption, highly linear conductance modulation, and inherent nonlinearity in the on-state. To demonstrate operational potential in large-scale crossbar arrays, we introduced a novel Spiking Neural Network (SNN) simulator that incorporates both device-level switching behaviors and key array-level parameters such as line resistance and sneak currents. Using this simulator, we successfully implemented a 16 × 16 selector-less crossbar array, achieving 80 % accuracy on the MNIST dataset.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"140 ","pages":"Article 110983"},"PeriodicalIF":16.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525003428","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Memristors hold great promise as next-generation devices, but their practical application faces challenges such as achieving low power consumption, multi-level resistance states, and efficient crossbar array construction. The switching characteristics and performance of memristors depend largely on the mobile species and the matrix through which they move, yet controlling ion dynamics remains difficult. In this study, we employed ruthenium (Ru) as the active electrode and utilized a SiO2 matrix in a nanorod structure, which reduces the activation energy for Ru ion diffusion and enhances redox reactions. Precise control of Ru ion dynamics enabled us to develop novel conduction paths and mechanisms. The Pt/SiO2 nanorods/Ru structure exhibits improved switching characteristics, including electroforming-free operation, low power consumption, highly linear conductance modulation, and inherent nonlinearity in the on-state. To demonstrate operational potential in large-scale crossbar arrays, we introduced a novel Spiking Neural Network (SNN) simulator that incorporates both device-level switching behaviors and key array-level parameters such as line resistance and sneak currents. Using this simulator, we successfully implemented a 16 × 16 selector-less crossbar array, achieving 80 % accuracy on the MNIST dataset.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.