{"title":"Efficient electrochemical oxidation of ofloxacin by IrO2 -RuO2-TiO2 /Ti anode: Parameters optimization, kinetics and degradation pathways","authors":"Juxiang Chen, Yanying Jiang, Yuxia Feng, Shangye Yang, Xinrong Shang","doi":"10.1016/j.envpol.2025.126216","DOIUrl":null,"url":null,"abstract":"<div><div>Among various pharmaceutical pollutants, fluoroquinolones broad-spectrum antibiotics are major water pollutants, usually present in the aquatic environment as multicomponent mixtures with potentially deleterious effects on humans and the environment. This study used electrochemical oxidation to remove ofloxacin from aqueous solution using Ti and IrO<sub>2</sub>–RuO<sub>2</sub>–TiO<sub>2</sub>/Ti electrodes as cathode and anode, respectively. We investigated the morphology and electrochemical behavior of the selected anode and analyzed the effects of operational variables on the degradation performance of OFL in detail. The results showed that the electrochemical system for degrading OFL possessed high oxidizing activity and excellent durability, and the hydroxyl and reactive chlorine radicals generated by the electrochemical reaction could effectively degrade OFL. As predicted and optimized by the PSO-SVR model, the removal of OFL could be increased to 99.011 % when the electrolyte concentration was 5.65 mM, current density was 3.9 mA/cm<sup>2</sup>, initial pH was 7.12, and treatment time was 3.7 min. In addition, four possible degradation pathways, including ring opening and mineralization, were proposed based on the byproducts calculated by DFT and determined by GC-MS. More importantly, this electrochemical process can efficiently degrade various organic pollutants (ciprofloxacin, enrofloxacin, sulfamethoxazole, oxytetracycline, and chloromycetin). This study provides the theoretical basis and essential data for applying this electrochemical system in wastewater treatment.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"374 ","pages":"Article 126216"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125005895","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Among various pharmaceutical pollutants, fluoroquinolones broad-spectrum antibiotics are major water pollutants, usually present in the aquatic environment as multicomponent mixtures with potentially deleterious effects on humans and the environment. This study used electrochemical oxidation to remove ofloxacin from aqueous solution using Ti and IrO2–RuO2–TiO2/Ti electrodes as cathode and anode, respectively. We investigated the morphology and electrochemical behavior of the selected anode and analyzed the effects of operational variables on the degradation performance of OFL in detail. The results showed that the electrochemical system for degrading OFL possessed high oxidizing activity and excellent durability, and the hydroxyl and reactive chlorine radicals generated by the electrochemical reaction could effectively degrade OFL. As predicted and optimized by the PSO-SVR model, the removal of OFL could be increased to 99.011 % when the electrolyte concentration was 5.65 mM, current density was 3.9 mA/cm2, initial pH was 7.12, and treatment time was 3.7 min. In addition, four possible degradation pathways, including ring opening and mineralization, were proposed based on the byproducts calculated by DFT and determined by GC-MS. More importantly, this electrochemical process can efficiently degrade various organic pollutants (ciprofloxacin, enrofloxacin, sulfamethoxazole, oxytetracycline, and chloromycetin). This study provides the theoretical basis and essential data for applying this electrochemical system in wastewater treatment.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.