{"title":"Mineral‑fungal interactions in response to biochar amendment: implications for carbon storage in saline-alkali soil","authors":"Lu Liu, Mengmeng Chen, Jeroen Meersmans, Yuyi Li, Shirong Zhang, Xiaodong Ding","doi":"10.1007/s11104-025-07360-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Biochar application has been widely acknowledged as an environment-friendly practice to promote soil organic carbon (SOC) stabilization and sequestration in agroecosystems. However, the interaction between fungal and minerals on organic carbon storage and stabilization with biochar application still remains unclear in saline-alkaline soil.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In the present research, this interaction has been studied by following 6 years treatments at an experimental farm: i) CK, without any fertilization; ii) NPK, only mineral fertilizer; iii) BC, 8.0 Mg ha<sup>−1</sup> biochar-based NPK and iv) FeBC, 8.0 Mg ha<sup>−1</sup> Fe modified biochar-based NPK, respectively.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results show that the relative content of illite in BC and FeBC treatments was 4.8%-5.1% higher than that in NPK treatment. Moreover, more stable OC fractions and functional groups, including particulate organic carbon (POC) and aromatic-C, were found in BC and FeBC treatments. Meanwhile, a positive relationship between illite and aromatic-C was found. The two of which might form organic-mineral complexes to decrease specific C mineralization rate. Besides, biochar application increased the diversity of soil fungal community and composition at the phylum level, such as <i>Ascomycota</i>. Redundancy analysis revealed that the content of soil POC and SOC was the major property affecting fungal diversity. Furthermore, the relative abundance of <i>Ascomycota</i> and <i>Basidiomycota</i> was positively correlated with SOC storage.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Effects of biochar, especially Fe-modified biochar last up to six years to improve the stability and storage of SOC in saline-alkali paddy soils, which may be a better agro-management practice.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"64 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07360-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Biochar application has been widely acknowledged as an environment-friendly practice to promote soil organic carbon (SOC) stabilization and sequestration in agroecosystems. However, the interaction between fungal and minerals on organic carbon storage and stabilization with biochar application still remains unclear in saline-alkaline soil.
Methods
In the present research, this interaction has been studied by following 6 years treatments at an experimental farm: i) CK, without any fertilization; ii) NPK, only mineral fertilizer; iii) BC, 8.0 Mg ha−1 biochar-based NPK and iv) FeBC, 8.0 Mg ha−1 Fe modified biochar-based NPK, respectively.
Results
The results show that the relative content of illite in BC and FeBC treatments was 4.8%-5.1% higher than that in NPK treatment. Moreover, more stable OC fractions and functional groups, including particulate organic carbon (POC) and aromatic-C, were found in BC and FeBC treatments. Meanwhile, a positive relationship between illite and aromatic-C was found. The two of which might form organic-mineral complexes to decrease specific C mineralization rate. Besides, biochar application increased the diversity of soil fungal community and composition at the phylum level, such as Ascomycota. Redundancy analysis revealed that the content of soil POC and SOC was the major property affecting fungal diversity. Furthermore, the relative abundance of Ascomycota and Basidiomycota was positively correlated with SOC storage.
Conclusion
Effects of biochar, especially Fe-modified biochar last up to six years to improve the stability and storage of SOC in saline-alkali paddy soils, which may be a better agro-management practice.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.