Empirical Modification of Force Fields for the Development of Peptide-Based Gas Sensors

Thuc Anh Ngo, Tanju Yildirim, Meng-Qun Feng, Kosuke Minami, Kota Shiba, Genki Yoshikawa
{"title":"Empirical Modification of Force Fields for the Development of Peptide-Based Gas Sensors","authors":"Thuc Anh Ngo,&nbsp;Tanju Yildirim,&nbsp;Meng-Qun Feng,&nbsp;Kosuke Minami,&nbsp;Kota Shiba,&nbsp;Genki Yoshikawa","doi":"10.1002/adsr.202400122","DOIUrl":null,"url":null,"abstract":"<p>Molecular dynamics models combined with computational approaches can be used as advanced screening techniques for finding highly efficient material-molecule interactions based on binding affinity, including in the development of gas sensors. However, most models are originally designed for liquid phase interactions, which do not align with gas sensing conditions, resulting in lower-than-expected performance. This study introduces an empirical modification method to adjust peptide interaction models for a gas phase, aiming to better accommodate the interaction between pentapeptides and target gas molecules. By adapting the weights of terms in the Gibbs free energy equation given in an empirical force field model, we demonstrate a significant increase in the absolute value of coefficient of determination (<i>R</i><sub>0</sub><sup>2</sup>) , from an average of 0.05 with conventional liquid phase models to 0.90 with proposed gas phase models. An empirical modification technique for gas phase interactions markedly enhances the prediction accuracy of models, facilitating the effective development of peptide-based gas sensors.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics models combined with computational approaches can be used as advanced screening techniques for finding highly efficient material-molecule interactions based on binding affinity, including in the development of gas sensors. However, most models are originally designed for liquid phase interactions, which do not align with gas sensing conditions, resulting in lower-than-expected performance. This study introduces an empirical modification method to adjust peptide interaction models for a gas phase, aiming to better accommodate the interaction between pentapeptides and target gas molecules. By adapting the weights of terms in the Gibbs free energy equation given in an empirical force field model, we demonstrate a significant increase in the absolute value of coefficient of determination (R02) , from an average of 0.05 with conventional liquid phase models to 0.90 with proposed gas phase models. An empirical modification technique for gas phase interactions markedly enhances the prediction accuracy of models, facilitating the effective development of peptide-based gas sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信