Alessandro Tonelli, Anna Tortone, Alessandro Grazioli, Francesco Pasquali, Michele Sozzi, Alessandro Candiani, Luca Capelli, Alessandro Bertucci
{"title":"A Portable and Low-Cost Single Board Computer-Based Spectrophotometric Platform for Optical Analysis in the UV and Visible Range","authors":"Alessandro Tonelli, Anna Tortone, Alessandro Grazioli, Francesco Pasquali, Michele Sozzi, Alessandro Candiani, Luca Capelli, Alessandro Bertucci","doi":"10.1002/adsr.202400163","DOIUrl":null,"url":null,"abstract":"<p>The growing ability of high-performance consumer electronics is fostering innovation in prototyping and research. Although the Raspberry Pi single-board computer (SBC) is widely used across various fields, including diagnostics, applications involving UV-based reading remain underexplored. In this study, a simple, low-cost (less than 100 euros), and portable device for UV–vis measurements based on Raspberry Pi is presented. The system integrates the AS7341 multi-channel multispectral digital sensor, offering analytical performance comparable to two commercial spectrophotometers – one benchtop and one portable – in terms of linearity, limit of detection, quantitation, and repeatability. Furthermore, the device demonstrates reliable performance both in analyzing real wine samples using two different commercial enzymatic kits and in quantifying different concentrations of synthetic DNA oligonucleotides. By providing a ready-to-use, portable, and affordable platform for UV–vis diagnostics, this prototype is well-suited for resource-limited settings, educational environments, and IoT applications where numerous distributed sensors are required for specific diagnostic tasks.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The growing ability of high-performance consumer electronics is fostering innovation in prototyping and research. Although the Raspberry Pi single-board computer (SBC) is widely used across various fields, including diagnostics, applications involving UV-based reading remain underexplored. In this study, a simple, low-cost (less than 100 euros), and portable device for UV–vis measurements based on Raspberry Pi is presented. The system integrates the AS7341 multi-channel multispectral digital sensor, offering analytical performance comparable to two commercial spectrophotometers – one benchtop and one portable – in terms of linearity, limit of detection, quantitation, and repeatability. Furthermore, the device demonstrates reliable performance both in analyzing real wine samples using two different commercial enzymatic kits and in quantifying different concentrations of synthetic DNA oligonucleotides. By providing a ready-to-use, portable, and affordable platform for UV–vis diagnostics, this prototype is well-suited for resource-limited settings, educational environments, and IoT applications where numerous distributed sensors are required for specific diagnostic tasks.