Asymptotic normality of pattern occurrences in random maps

IF 1 2区 数学 Q1 MATHEMATICS
Michael Drmota, Eva-Maria Hainzl, Nick Wormald
{"title":"Asymptotic normality of pattern occurrences in random maps","authors":"Michael Drmota,&nbsp;Eva-Maria Hainzl,&nbsp;Nick Wormald","doi":"10.1112/jlms.70149","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to study the limiting distribution of special <i>additive functionals</i> on random planar maps, namely the number of occurrences of a given <i>pattern</i>. The main result is a central limit theorem for these pattern counts in the case of patterns with a simple boundary. The proof relies on a combination of analytic and combinatorial methods together with a moment method due to Gao and Wormald [Probab. Theory Relat. Fields <b>130</b> (2004), 368–376]. It is an important issue to handle the overlap structure of two patterns which is the main difficulty in the proof.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to study the limiting distribution of special additive functionals on random planar maps, namely the number of occurrences of a given pattern. The main result is a central limit theorem for these pattern counts in the case of patterns with a simple boundary. The proof relies on a combination of analytic and combinatorial methods together with a moment method due to Gao and Wormald [Probab. Theory Relat. Fields 130 (2004), 368–376]. It is an important issue to handle the overlap structure of two patterns which is the main difficulty in the proof.

随机映射中模式出现的渐近正态性
本文的目的是研究特殊加性泛函在随机平面映射上的极限分布,即给定图形出现的次数。主要结果是在具有简单边界的模式的情况下,这些模式计数的中心极限定理。该证明依赖于解析和组合方法的结合以及Gao和Wormald [Probab]的矩量法。代数理论。环境科学学报(2004),368-376。如何处理两种模式的重叠结构是证明中的一个重要问题,也是证明的主要难点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信