Mohamed Idbella, Giuseppina Iacomino, Ahmed M. Abd-ElGawad, Giuliano Bonanomi
{"title":"Soil Microbial Co-Occurrence Networks Across Climate and Land Use Gradient in Southern Italy","authors":"Mohamed Idbella, Giuseppina Iacomino, Ahmed M. Abd-ElGawad, Giuliano Bonanomi","doi":"10.1111/1758-2229.70093","DOIUrl":null,"url":null,"abstract":"<p>Despite extensive research on microbiota across land use gradients, it remains unclear if microbial co-occurrence relationships exhibit consistent patterns. Here, we assessed microbial co-occurrence networks of seven natural ecosystems—<i>Quercus ilex</i> forest, <i>Fagus sylvatica</i> forest, <i>Abies alba</i> forest, Mediterranean and mountain grasslands, and subalpine and Mediterranean shrublands—and five agroecosystems, including vineyards, horticulture, greenhouse, a polluted agricultural system, and an arid greenhouse. Soil chemistry, such as pH, organic carbon and total nitrogen, was characterised, and soil microbiota were profiled using high-throughput sequencing from 242 soil samples. Our results revealed that mountain grasslands had the highest organic carbon (86.4 g/kg), while the arid greenhouse had the lowest (6.1 g/kg). Mediterranean grasslands had the lowest pH of 5.79, and vineyards had the highest electrical conductivity of 0.901 dS/m. Notably, natural ecosystem networks exhibited greater modularity, with protected horticulture showing exceptionally the highest (0.937), while intensive agriculture within agroecosystems had a significantly lower modularity of 0.282. Modularity and the number of modules were positively correlated with soil P<sub>2</sub>O<sub>5</sub>, while network diameter, path length and clustering coefficient were correlated with soil pH. Additionally, edges and nodes number, average degree and microbial diversity were positively associated with organic carbon and total nitrogen. These findings highlight that natural ecosystems foster more complex and resilient microbial networks, underscoring sustainable land management's importance to preserve soil health and microbial diversity.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite extensive research on microbiota across land use gradients, it remains unclear if microbial co-occurrence relationships exhibit consistent patterns. Here, we assessed microbial co-occurrence networks of seven natural ecosystems—Quercus ilex forest, Fagus sylvatica forest, Abies alba forest, Mediterranean and mountain grasslands, and subalpine and Mediterranean shrublands—and five agroecosystems, including vineyards, horticulture, greenhouse, a polluted agricultural system, and an arid greenhouse. Soil chemistry, such as pH, organic carbon and total nitrogen, was characterised, and soil microbiota were profiled using high-throughput sequencing from 242 soil samples. Our results revealed that mountain grasslands had the highest organic carbon (86.4 g/kg), while the arid greenhouse had the lowest (6.1 g/kg). Mediterranean grasslands had the lowest pH of 5.79, and vineyards had the highest electrical conductivity of 0.901 dS/m. Notably, natural ecosystem networks exhibited greater modularity, with protected horticulture showing exceptionally the highest (0.937), while intensive agriculture within agroecosystems had a significantly lower modularity of 0.282. Modularity and the number of modules were positively correlated with soil P2O5, while network diameter, path length and clustering coefficient were correlated with soil pH. Additionally, edges and nodes number, average degree and microbial diversity were positively associated with organic carbon and total nitrogen. These findings highlight that natural ecosystems foster more complex and resilient microbial networks, underscoring sustainable land management's importance to preserve soil health and microbial diversity.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.