Role of Midwater Mixed Waves in the Loop Current Separation Events From a Coupled Ocean-Atmosphere Regional Model and In Situ Observations

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Xiao Ge, Steven F. DiMarco, Yun Liu, Ping Chang, Dan Fu, Jaison Kurian, Chuan-Yuan Hsu, Anthony H. Knap
{"title":"Role of Midwater Mixed Waves in the Loop Current Separation Events From a Coupled Ocean-Atmosphere Regional Model and In Situ Observations","authors":"Xiao Ge,&nbsp;Steven F. DiMarco,&nbsp;Yun Liu,&nbsp;Ping Chang,&nbsp;Dan Fu,&nbsp;Jaison Kurian,&nbsp;Chuan-Yuan Hsu,&nbsp;Anthony H. Knap","doi":"10.1029/2024JC021330","DOIUrl":null,"url":null,"abstract":"<p>A previously uninvestigated necking-down region in the Gulf of Mexico, associated with the Loop Current eddy (LCE) separations is defined by the 8–16 days variance below the Loop Current system (LCS) around 88.5°W, using an Ocean-Atmosphere Coupled Regional-Community Earth System Model (R-CESM) 9-year nature run, which reveals the mechanisms of Loop Current (LC) deep dynamics. Scaled wavelet analysis of flow fields in five regions at the 27.5 kg/m<sup>3</sup> potential density layer under the LCS shows that the 8–16 days variance is reproduced by the R-CESM model dynamics, aligning with in situ observations. This weather band deep variance, identified as the mixed waves located between the mixed Rossby-gravity waves and Rossby waves in the ocean wave dispersion relationship, is stimulated by the interaction between the penetrating LC and steep topography. Then, these waves are released from the constraints of the topography and become free wave trains. There are three critical regions for the propagating wave trains: the Mississippi Fan, the Yucatan Shelf, and the Florida Escapement. The various wave trains define five distinct scenarios: East Yucatan Shelf (EYSS), West Yucatan Shelf (WYSS), west Florida escarpment (WFES), Mississippi Fan (MFS), and quiescent (QS) scenarios. The scenarios passing through the west necking-down region can be used to indicate the LCE separations. After the separations, the retracted LC may encounter interference from either the EYSS or the WFES, preventing the reattachments. These 8–16-day waves offer insights into describing the LC shedding events from the lower layer of the LCS, enhancing the understanding of LCS dynamics.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021330","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021330","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

A previously uninvestigated necking-down region in the Gulf of Mexico, associated with the Loop Current eddy (LCE) separations is defined by the 8–16 days variance below the Loop Current system (LCS) around 88.5°W, using an Ocean-Atmosphere Coupled Regional-Community Earth System Model (R-CESM) 9-year nature run, which reveals the mechanisms of Loop Current (LC) deep dynamics. Scaled wavelet analysis of flow fields in five regions at the 27.5 kg/m3 potential density layer under the LCS shows that the 8–16 days variance is reproduced by the R-CESM model dynamics, aligning with in situ observations. This weather band deep variance, identified as the mixed waves located between the mixed Rossby-gravity waves and Rossby waves in the ocean wave dispersion relationship, is stimulated by the interaction between the penetrating LC and steep topography. Then, these waves are released from the constraints of the topography and become free wave trains. There are three critical regions for the propagating wave trains: the Mississippi Fan, the Yucatan Shelf, and the Florida Escapement. The various wave trains define five distinct scenarios: East Yucatan Shelf (EYSS), West Yucatan Shelf (WYSS), west Florida escarpment (WFES), Mississippi Fan (MFS), and quiescent (QS) scenarios. The scenarios passing through the west necking-down region can be used to indicate the LCE separations. After the separations, the retracted LC may encounter interference from either the EYSS or the WFES, preventing the reattachments. These 8–16-day waves offer insights into describing the LC shedding events from the lower layer of the LCS, enhancing the understanding of LCS dynamics.

Abstract Image

从海洋-大气区域耦合模式和现场观测结果看中层混合波在环流分离事件中的作用
利用海洋-大气耦合区域-群落地球系统模型(R-CESM) 9年的自然运行,通过在88.5°W附近的环流系统(LCS)下方8-16天的变化,定义了墨西哥湾一个以前未被研究的与环流涡(LCE)分离相关的沉降区,揭示了环流(LC)深度动力学的机制。对LCS下27.5 kg/m3势密度层5个区域流场的尺度小波分析表明,R-CESM模式的8-16 d变化与现场观测结果一致。该天气带深度方差为位于混合罗斯比重力波与混合罗斯比重力波色散关系之间的混合波,是由穿透性LC与陡峭地形的相互作用激发的。然后,这些波从地形的约束中释放出来,成为自由波列。有三个传播波列的关键区域:密西西比扇、尤卡坦大陆架和佛罗里达擒纵架。不同的波列定义了五种不同的情景:东尤卡坦大陆架(EYSS)、西尤卡坦大陆架(WYSS)、西佛罗里达悬崖(WFES)、密西西比扇(MFS)和静止(QS)情景。通过西部下沉区域的情景可以用来指示LCE分离。分离后,回缩的LC可能会受到EYSS或WFES的干扰,从而阻止再附着。这些8 - 16天的波为描述LCS下层的LC脱落事件提供了见解,增强了对LCS动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信