Quantum Mechanics in Plasmonic Nanocavities: from Theory to Applications

Tao Ding, Christos Tserkezis, Christos Mystilidis, Guy A. E. Vandenbosch, Xuezhi Zheng
{"title":"Quantum Mechanics in Plasmonic Nanocavities: from Theory to Applications","authors":"Tao Ding,&nbsp;Christos Tserkezis,&nbsp;Christos Mystilidis,&nbsp;Guy A. E. Vandenbosch,&nbsp;Xuezhi Zheng","doi":"10.1002/apxr.202400144","DOIUrl":null,"url":null,"abstract":"<p>Quantum mechanical effects in plasmonic nanocavities have attracted strong interest in the last two decades, related to both their experimental realization and implementation in technological applications, and to the challenges that need to be overcome in their theoretical modeling. This review summarizes the basic theories of quantum plasmonics, its modeling strategies, and the material systems that support it. Particularly it is focused on recent progress in quantum plasmonics based on the nanoparticle-on-mirror (NPoM) structure, i.e., plasmonic nanoparticles separated from an underlying metallic substrate via an ultrathin spacer, which provides an elegant route toward cost-effective fabrication of a large number of similar plasmonic cavities. A dramatic shift of research trends is seen from basic modeling to applications in nano-optics, polaritonics, chemistry, and biosensing, gradually making the transition from fundamental, curiosity-driven research to applied science.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum mechanical effects in plasmonic nanocavities have attracted strong interest in the last two decades, related to both their experimental realization and implementation in technological applications, and to the challenges that need to be overcome in their theoretical modeling. This review summarizes the basic theories of quantum plasmonics, its modeling strategies, and the material systems that support it. Particularly it is focused on recent progress in quantum plasmonics based on the nanoparticle-on-mirror (NPoM) structure, i.e., plasmonic nanoparticles separated from an underlying metallic substrate via an ultrathin spacer, which provides an elegant route toward cost-effective fabrication of a large number of similar plasmonic cavities. A dramatic shift of research trends is seen from basic modeling to applications in nano-optics, polaritonics, chemistry, and biosensing, gradually making the transition from fundamental, curiosity-driven research to applied science.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信