Yingjie Dai, Hongxia Yin, Junfeng Zhao, Pengcheng Zhu, Zhilin Suo
{"title":"Preparation of Biochar from Straw in Northeast China to Assist in Carbon Neutrality:Data Visualization and Comprehensive Evaluation","authors":"Yingjie Dai, Hongxia Yin, Junfeng Zhao, Pengcheng Zhu, Zhilin Suo","doi":"10.1007/s11270-025-07964-6","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon neutrality is an important goal of global energy conservation and emission reduction, and achieving the green and low-carbon technological revolution. The straw biomass in Northeast China is a potential green resource, and its pyrolysis into biochar (BC) is of great significance for carbon neutrality. This study is based on bibliometrics to conduct network co-occurrence analysis on recent BC and carbon neutrality aspects, and uses the AHP + GRA dual evaluation model for index optimization evaluation. The research direction of BC in carbon neutrality in 2023 is more focused on its carbon fixation performance for carbonaceous substances. The carbon fixation index of BC accounts for 0.314 of this layer, which exceeds 30%. GRA is used to evaluate the performance of BC, with the highest correlation between η and C<sub>0</sub>-η (1.0), followed by pore diameter, (O + N)/C, O/C, H/C, ash, SA, pore volume, C, and pH<sub>pzc</sub> (0.696). In the process of assisting carbon neutrality with straw BC, the focus should be on carbon sequestration performance, while also considering various factors used for preparation. The aim of this study is to optimize the carbon neutrality indicators for evaluating the resource utilization process of solid waste such as straw, in order to provide a fundamental reference for decision-makers in preparing high-value products.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07964-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon neutrality is an important goal of global energy conservation and emission reduction, and achieving the green and low-carbon technological revolution. The straw biomass in Northeast China is a potential green resource, and its pyrolysis into biochar (BC) is of great significance for carbon neutrality. This study is based on bibliometrics to conduct network co-occurrence analysis on recent BC and carbon neutrality aspects, and uses the AHP + GRA dual evaluation model for index optimization evaluation. The research direction of BC in carbon neutrality in 2023 is more focused on its carbon fixation performance for carbonaceous substances. The carbon fixation index of BC accounts for 0.314 of this layer, which exceeds 30%. GRA is used to evaluate the performance of BC, with the highest correlation between η and C0-η (1.0), followed by pore diameter, (O + N)/C, O/C, H/C, ash, SA, pore volume, C, and pHpzc (0.696). In the process of assisting carbon neutrality with straw BC, the focus should be on carbon sequestration performance, while also considering various factors used for preparation. The aim of this study is to optimize the carbon neutrality indicators for evaluating the resource utilization process of solid waste such as straw, in order to provide a fundamental reference for decision-makers in preparing high-value products.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.