Ritika Soni, P. E. Lokhande, Deepak Kumar, Vishal Kadam, Chaitali Jagtap, Udayabhaskar Rednam, Ritika Singh, Kulwinder Singh, Shailesh Padalkar, Bandar Ali Al-Asbahi
{"title":"Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology","authors":"Ritika Soni, P. E. Lokhande, Deepak Kumar, Vishal Kadam, Chaitali Jagtap, Udayabhaskar Rednam, Ritika Singh, Kulwinder Singh, Shailesh Padalkar, Bandar Ali Al-Asbahi","doi":"10.1007/s11705-025-2542-5","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO<sub>4</sub>) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO<sub>4</sub> compound electrode exhibited a maximum specific capacitance of 893 F·g<sup>−1</sup> at a current density of 0.5 A·g<sup>−1</sup> and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO<sub>4</sub> and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg<sup>−1</sup> at a power density of 600 W·kg<sup>−1</sup> and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2542-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO4) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO4 compound electrode exhibited a maximum specific capacitance of 893 F·g−1 at a current density of 0.5 A·g−1 and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO4 and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg−1 at a power density of 600 W·kg−1 and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.