Machine learning driven models for microhardness estimation of composite materials

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
A. E. Rezvanova, M. I. Kochergin, N. A. Luginin, V. V. Chebodaeva
{"title":"Machine learning driven models for microhardness estimation of composite materials","authors":"A. E. Rezvanova,&nbsp;M. I. Kochergin,&nbsp;N. A. Luginin,&nbsp;V. V. Chebodaeva","doi":"10.1007/s11182-025-03409-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study is devoted to the development of models for predicting the microhardness of bulk composite materials by machine learning (ML) techniques. The microhardness prediction is based on standard mechanical tests, specifically employing the Vickers indentation method. To quantitatively assess the influence of material composition on the microhardness of the composites, we have developed a novel methodology. This approach involves constructing a surrogate model based on an ML Random Forest Method (RFM) and an analytical model for calculating the material hardness. The RFM simulates the probability distribution of the indenter imprint diagonal after microhardness tests which are the input data for the analytical model to compute the material hardness. The results of application of the RFM showed significantly greater accuracy (MSE is 7.42·10<sup>−4</sup>%) on the test data. Our findings underscore the synergistic potential of combination of experimental and computational simulation techniques, including machine learning, to predict the mechanical properties of the materials.</p></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"68 1","pages":"113 - 121"},"PeriodicalIF":0.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-025-03409-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study is devoted to the development of models for predicting the microhardness of bulk composite materials by machine learning (ML) techniques. The microhardness prediction is based on standard mechanical tests, specifically employing the Vickers indentation method. To quantitatively assess the influence of material composition on the microhardness of the composites, we have developed a novel methodology. This approach involves constructing a surrogate model based on an ML Random Forest Method (RFM) and an analytical model for calculating the material hardness. The RFM simulates the probability distribution of the indenter imprint diagonal after microhardness tests which are the input data for the analytical model to compute the material hardness. The results of application of the RFM showed significantly greater accuracy (MSE is 7.42·10−4%) on the test data. Our findings underscore the synergistic potential of combination of experimental and computational simulation techniques, including machine learning, to predict the mechanical properties of the materials.

复合材料显微硬度估计的机器学习驱动模型
本研究致力于利用机器学习(ML)技术开发预测大块复合材料显微硬度的模型。显微硬度预测是基于标准力学试验,特别是采用维氏压痕法。为了定量评估材料成分对复合材料显微硬度的影响,我们开发了一种新的方法。该方法包括构建基于ML随机森林方法(RFM)的代理模型和计算材料硬度的分析模型。RFM模拟了显微硬度测试后压痕对角线的概率分布,这些数据是分析模型计算材料硬度的输入数据。RFM的应用结果显示,测试数据的准确率显著提高(MSE为7.42·10−4%)。我们的研究结果强调了实验和计算模拟技术(包括机器学习)相结合的协同潜力,以预测材料的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信