{"title":"Quercetin prevents sarcopenia by reversing oxidative stress and mitochondrial damage","authors":"Jianwei Sun, Haibing Liu, Ying Yan, Fei Fang","doi":"10.1007/s10735-025-10411-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effectiveness of quercetin (QUE) in preventing sarcopenia via the PI3K/AKT signaling pathway. Thirty SD rats were categorized into three groups: a young control group (Y), an old control group (O), and an old QUE-supplemented group (O + QUE). Body weight and grip strength were monitored weekly during the experiment. Soleus and gastrocnemius muscle weights, gastrocnemius tissue pathological examination, cell apoptosis, and mitochondrial damage were evaluated using HE, TUNEL staining, electron microscopy, and JC-1 staining. Biochemical assays and molecular biology techniques (qPCR and Western blot) were used to assess oxidative stress markers and the expression of sarcopenia-related genes and proteins. QUE supplementation increased muscle weight and improved grip strength in aged rats. Furthermore, QUE supplementation alleviated tissue damage, apoptosis, enhanced antioxidant capacity, and decreased damage to oxidative stress and mitochondria in the gastrocnemius of old rats. Molecular assessments revealed downregulation of muscle degradation markers (MuRF1, Atrogen-1, Bnip3) and upregulation of PI3K/AKT pathway proteins, suggesting a mechanistic pathway through which QUE mitigates sarcopenia. QUE maybe modulate the PI3K/AKT pathway to alleviate oxidative stress, mitochondrial damage, and muscle degradation due to aging, highlighting its potential as a therapeutic agent against sarcopenia.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10411-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effectiveness of quercetin (QUE) in preventing sarcopenia via the PI3K/AKT signaling pathway. Thirty SD rats were categorized into three groups: a young control group (Y), an old control group (O), and an old QUE-supplemented group (O + QUE). Body weight and grip strength were monitored weekly during the experiment. Soleus and gastrocnemius muscle weights, gastrocnemius tissue pathological examination, cell apoptosis, and mitochondrial damage were evaluated using HE, TUNEL staining, electron microscopy, and JC-1 staining. Biochemical assays and molecular biology techniques (qPCR and Western blot) were used to assess oxidative stress markers and the expression of sarcopenia-related genes and proteins. QUE supplementation increased muscle weight and improved grip strength in aged rats. Furthermore, QUE supplementation alleviated tissue damage, apoptosis, enhanced antioxidant capacity, and decreased damage to oxidative stress and mitochondria in the gastrocnemius of old rats. Molecular assessments revealed downregulation of muscle degradation markers (MuRF1, Atrogen-1, Bnip3) and upregulation of PI3K/AKT pathway proteins, suggesting a mechanistic pathway through which QUE mitigates sarcopenia. QUE maybe modulate the PI3K/AKT pathway to alleviate oxidative stress, mitochondrial damage, and muscle degradation due to aging, highlighting its potential as a therapeutic agent against sarcopenia.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.