Joint Optimization for Power-Splitting Relay-Assisted Over-the-Air Computation Networks

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Qishuo Wang;Quanzhong Li
{"title":"Joint Optimization for Power-Splitting Relay-Assisted Over-the-Air Computation Networks","authors":"Qishuo Wang;Quanzhong Li","doi":"10.1109/LCOMM.2025.3545370","DOIUrl":null,"url":null,"abstract":"Relays can significantly improve the performance of over-the-air computation (AirComp) networks, especially when the sensors and the fusion center (FC) are far apart. However, the relay’s energy supply is a common constraint factor of relay-assisted AirComp networks. To address the power constrained issue, we introduce power-splitting (PS) relays into an AirComp network, where the relays can harvest energy from the transmitted signals of the sensors and the FC by the PS scheme and then forward the signals to the FC by using the harvested energy. Our objective is to minimize the computational mean square error (CMSE) at the FC by jointly optimizing the transmit coefficients at the sensors, the amplify and forward (AF) coefficients and PS ratios at the relays, and the de-noising factor at the FC, under the individual power constraints at the sensors and relays. The optimization problem is highly non-convex and difficult to solve. By exploiting the inexact block coordinate descent (IBCD) algorithm and the constrained concave-convex procedure (CCCP), we propose an IBCD-CCCP algorithm to solve the optimization problem effectively. Numerical results are presented to demonstrate the effectiveness of our scheme as compared to the baseline methods.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 4","pages":"853-857"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10902601/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Relays can significantly improve the performance of over-the-air computation (AirComp) networks, especially when the sensors and the fusion center (FC) are far apart. However, the relay’s energy supply is a common constraint factor of relay-assisted AirComp networks. To address the power constrained issue, we introduce power-splitting (PS) relays into an AirComp network, where the relays can harvest energy from the transmitted signals of the sensors and the FC by the PS scheme and then forward the signals to the FC by using the harvested energy. Our objective is to minimize the computational mean square error (CMSE) at the FC by jointly optimizing the transmit coefficients at the sensors, the amplify and forward (AF) coefficients and PS ratios at the relays, and the de-noising factor at the FC, under the individual power constraints at the sensors and relays. The optimization problem is highly non-convex and difficult to solve. By exploiting the inexact block coordinate descent (IBCD) algorithm and the constrained concave-convex procedure (CCCP), we propose an IBCD-CCCP algorithm to solve the optimization problem effectively. Numerical results are presented to demonstrate the effectiveness of our scheme as compared to the baseline methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信