Xue Tong;Zhenning Zhao;Yunxian Zhong;Dong Lin;Zhuangzhuang Zhu;Qing Zhong;Jinping He
{"title":"A Single Waveguide Spectrometer via Defect Scattering","authors":"Xue Tong;Zhenning Zhao;Yunxian Zhong;Dong Lin;Zhuangzhuang Zhu;Qing Zhong;Jinping He","doi":"10.1109/JPHOT.2025.3554022","DOIUrl":null,"url":null,"abstract":"Miniaturized spectrometers show great application potential in biology, medicine, astronomy and so on. However, it is still challenging to obtain broadband spectrum and high spectral resolution simultaneously with limited size. In this study, we proposed a single waveguide spectrometer based on light scattering of the defects buried in the waveguide. The detections of the scattering light are set on the upper surface of the waveguide, as a result, tremendous detection channels can be realized even within a small structure size, which makes simultaneously high resolution and broad bandwidth detection achievable. Simulation studies show that this kind of spectrometer can exhibits an impressive bandwidth of 1000 nm, ranging from 600 to 1600 nm. Additionally, a resolution of 0.2 nm is achieved within the range of 850 to 852 nm through fine sampling. The influence factors of the performance of the spectrometer is also studied. This work provides the possibility of achieving on-chip, high-resolution, and wide-bandwidth spectrometers.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 2","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937772","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937772/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Miniaturized spectrometers show great application potential in biology, medicine, astronomy and so on. However, it is still challenging to obtain broadband spectrum and high spectral resolution simultaneously with limited size. In this study, we proposed a single waveguide spectrometer based on light scattering of the defects buried in the waveguide. The detections of the scattering light are set on the upper surface of the waveguide, as a result, tremendous detection channels can be realized even within a small structure size, which makes simultaneously high resolution and broad bandwidth detection achievable. Simulation studies show that this kind of spectrometer can exhibits an impressive bandwidth of 1000 nm, ranging from 600 to 1600 nm. Additionally, a resolution of 0.2 nm is achieved within the range of 850 to 852 nm through fine sampling. The influence factors of the performance of the spectrometer is also studied. This work provides the possibility of achieving on-chip, high-resolution, and wide-bandwidth spectrometers.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.