Locally energy-stable finite element schemes for incompressible flow problems: Design and analysis for equal-order interpolations

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hennes Hajduk , Dmitri Kuzmin , Gert Lube , Philipp Öffner
{"title":"Locally energy-stable finite element schemes for incompressible flow problems: Design and analysis for equal-order interpolations","authors":"Hennes Hajduk ,&nbsp;Dmitri Kuzmin ,&nbsp;Gert Lube ,&nbsp;Philipp Öffner","doi":"10.1016/j.compfluid.2025.106622","DOIUrl":null,"url":null,"abstract":"<div><div>We show that finite element discretizations of incompressible flow problems can be designed to ensure preservation/dissipation of kinetic energy not only globally but also locally. In the context of equal-order (piecewise-linear) interpolations, we prove the validity of a semi-discrete energy inequality for a quadrature-based approximation to the nonlinear convective term, which we combine with the Becker–Hansbo pressure stabilization. An analogy with entropy-stable algebraic flux correction schemes for the compressible Euler equations and the shallow water equations yields a weak ‘bounded variation’ estimate from which we deduce the semi-discrete Lax–Wendroff consistency and convergence towards dissipative weak solutions. The results of our numerical experiments for standard test problems confirm that the method under investigation is non-oscillatory and exhibits optimal convergence behavior.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"294 ","pages":"Article 106622"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000829","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that finite element discretizations of incompressible flow problems can be designed to ensure preservation/dissipation of kinetic energy not only globally but also locally. In the context of equal-order (piecewise-linear) interpolations, we prove the validity of a semi-discrete energy inequality for a quadrature-based approximation to the nonlinear convective term, which we combine with the Becker–Hansbo pressure stabilization. An analogy with entropy-stable algebraic flux correction schemes for the compressible Euler equations and the shallow water equations yields a weak ‘bounded variation’ estimate from which we deduce the semi-discrete Lax–Wendroff consistency and convergence towards dissipative weak solutions. The results of our numerical experiments for standard test problems confirm that the method under investigation is non-oscillatory and exhibits optimal convergence behavior.
不可压缩流动问题的局部能量稳定有限元方案:等阶插值的设计与分析
我们证明了不可压缩流动问题的有限元离散化可以设计成不仅全局而且局部地保证动能的保存/耗散。在等阶(分段线性)插值的背景下,我们证明了半离散能量不等式对于非线性对流项的基于正交的近似的有效性,并将其与Becker-Hansbo压力稳定相结合。与可压缩欧拉方程和浅水方程的熵稳定代数通量修正格式的类比产生了一个弱“有界变差”估计,由此我们推导出半离散Lax-Wendroff一致性和向耗散弱解收敛。我们对标准测试问题的数值实验结果证实了所研究的方法是非振荡的,并表现出最优收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信