On the outdegree zeroth-order general Randić index of digraphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jiaxiang Yang , Hechao Liu , Xuesong Fu
{"title":"On the outdegree zeroth-order general Randić index of digraphs","authors":"Jiaxiang Yang ,&nbsp;Hechao Liu ,&nbsp;Xuesong Fu","doi":"10.1016/j.dam.2025.04.010","DOIUrl":null,"url":null,"abstract":"<div><div>For any digraph <span><math><mi>D</mi></math></span> and real number <span><math><mi>α</mi></math></span>, the outdegree zeroth-order general Randić index is defined as the sum of the outdegree of each vertex raised to the power of <span><math><mi>α</mi></math></span> across all vertices in the digraph <span><math><mi>D</mi></math></span>. A cactus graph <span><math><mi>G</mi></math></span> is a connected graph in which each block of <span><math><mi>G</mi></math></span> is either an edge or a cycle. An oriented cactus is the directed variant of a cactus graph, where each edge has a specified direction. For any real number <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and positive integers <span><math><mi>n</mi></math></span>, <span><math><mi>r</mi></math></span> with <span><math><mrow><mi>n</mi><mo>&gt;</mo><mn>2</mn><mi>r</mi></mrow></math></span>, we address the problem of identifying the maximum value of the outdegree zeroth-order general Randić index among oriented cacti with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>r</mi></math></span> cycles. Additionally, we determine the maximum value of the outdegree zeroth-order general Randić index over connected simple digraphs with <span><math><mi>n</mi></math></span> vertices and <span><math><mi>l</mi></math></span> arcs, where <span><math><mi>l</mi></math></span> is a positive integer. In particular, for <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span>, we obtain some of the results obtained in Ganie and Pirzada, (2024).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 76-86"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001738","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For any digraph D and real number α, the outdegree zeroth-order general Randić index is defined as the sum of the outdegree of each vertex raised to the power of α across all vertices in the digraph D. A cactus graph G is a connected graph in which each block of G is either an edge or a cycle. An oriented cactus is the directed variant of a cactus graph, where each edge has a specified direction. For any real number α2 and positive integers n, r with n>2r, we address the problem of identifying the maximum value of the outdegree zeroth-order general Randić index among oriented cacti with n vertices and r cycles. Additionally, we determine the maximum value of the outdegree zeroth-order general Randić index over connected simple digraphs with n vertices and l arcs, where l is a positive integer. In particular, for α=2, we obtain some of the results obtained in Ganie and Pirzada, (2024).
关于有向图的次零阶一般randiki索引
对于任意有向图D和实数α,零阶一般randiic指数定义为有向图D中所有顶点的每个顶点的出度数的α次幂的和。一个cactus图G是一个连通图,其中G的每个块是一条边或一个环。有向仙人掌是仙人掌图的有向变体,其中每条边都有指定的方向。对于任意实数α≥2和正整数n, r与n>;2r,我们研究了具有n个顶点和r个循环的有向仙人掌的外次零阶一般randiovi指数最大值的辨识问题。此外,我们确定了具有n个顶点和l条弧的连通简单有向图上的出度零阶一般randiki指数的最大值,其中l是一个正整数。特别是,对于α=2,我们得到了一些在Ganie和Pirzada,(2024)中得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信