On quantitative self-duality of super weakly compact operators

IF 1.2 3区 数学 Q1 MATHEMATICS
Kun Tu
{"title":"On quantitative self-duality of super weakly compact operators","authors":"Kun Tu","doi":"10.1016/j.jmaa.2025.129568","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that a bounded linear operator <em>T</em> between Banach spaces <em>X</em> and <em>Y</em> is super weakly compact if and only if so is its dual <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. We study the quantitative version of this implication. The paper contains a counterexample showing that the super weak essential norms of a bounded linear operator and its dual are not equivalent. In detail, we construct a sequence of bounded linear operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> so that the quotient norm <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is not equivalent to <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>. Above <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> stand for the collections of bounded linear operators and super weakly compact operators between <em>X</em> and <em>Y</em>, respectively. Our counterexample is derived from the Johnson-Lindenstrauss space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129568"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500349X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that a bounded linear operator T between Banach spaces X and Y is super weakly compact if and only if so is its dual T. We study the quantitative version of this implication. The paper contains a counterexample showing that the super weak essential norms of a bounded linear operator and its dual are not equivalent. In detail, we construct a sequence of bounded linear operators Tn:XY so that the quotient norm TnS induced by L(X,Y)/S(X,Y) is not equivalent to TnS induced by L(Y,X)/S(Y,X). Above L(X,Y) and S(X,Y) stand for the collections of bounded linear operators and super weakly compact operators between X and Y, respectively. Our counterexample is derived from the Johnson-Lindenstrauss space.
超弱紧算子的定量自对偶性
众所周知,在Banach空间X和Y之间的有界线性算子T是超弱紧的,当且仅当它的对偶T是超弱紧的。我们研究这一含义的定量版本。本文给出了一个反例,证明了有界线性算子及其对偶的超弱本质范数是不等价的。详细地,我们构造了一个有界线性算子Tn:X→Y的序列,使得L(X,Y)/S(X,Y)诱导的商范数‖Tn‖不等价于L(Y,X)/S(Y,X)诱导的‖Tn‖S。上面的L(X,Y)和S(X,Y)分别表示X和Y之间的有界线性算子和超弱紧算子的集合。我们的反例来自Johnson-Lindenstrauss空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信