{"title":"Folding pristine paper to an origami structure – materially and geometrically nonlinear finite element analysis","authors":"Tomi Kankkunen , Jarkko Niiranen","doi":"10.1016/j.euromechsol.2025.105674","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose-sheet-based origami packaging structures represent a promising solution for advancing environmental sustainability while meeting the growing demand for high-performance, functional, and personalized packaging. While significant progress has been made in modeling the mechanics and transformations of origami with pre-defined fold lines, as well as in the constitutive modeling of paper, there is limited research capturing the detailed physical transformation process from a pristine sheet to an origami structure. In packaging and converting, pre-treating fold lines is a common practice to define fold location and quality. However, leveraging the full range of manufacturing possibilities for origami requires a fundamental understanding of fold-line formation in non-trivial fold networks, where a pristine (no mechanical pre-treatment of creases) sheet is a starting point in folding. This study employs finite element modeling to systematically investigate the formation of Miura-ori-family-based structures in cellulose sheet materials with orthotropic, nonlinear constitutive behavior. The results reveal how tessellation parameters, material properties, and imperfections influence folding mechanics and the pristine formation of fold lines near fold intersection points.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"112 ","pages":"Article 105674"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825001081","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose-sheet-based origami packaging structures represent a promising solution for advancing environmental sustainability while meeting the growing demand for high-performance, functional, and personalized packaging. While significant progress has been made in modeling the mechanics and transformations of origami with pre-defined fold lines, as well as in the constitutive modeling of paper, there is limited research capturing the detailed physical transformation process from a pristine sheet to an origami structure. In packaging and converting, pre-treating fold lines is a common practice to define fold location and quality. However, leveraging the full range of manufacturing possibilities for origami requires a fundamental understanding of fold-line formation in non-trivial fold networks, where a pristine (no mechanical pre-treatment of creases) sheet is a starting point in folding. This study employs finite element modeling to systematically investigate the formation of Miura-ori-family-based structures in cellulose sheet materials with orthotropic, nonlinear constitutive behavior. The results reveal how tessellation parameters, material properties, and imperfections influence folding mechanics and the pristine formation of fold lines near fold intersection points.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.