{"title":"Unitary Cayley graphs of finite semisimple rings","authors":"Thanatach Tangsakul, Yotsanan Meemark","doi":"10.1016/j.dam.2025.04.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>R</mi></math></span> be a finite ring with identity <span><math><mrow><mn>1</mn><mo>≠</mo><mn>0</mn></mrow></math></span>. The <em>unitary Cayley graph</em> of <span><math><mi>R</mi></math></span>, denoted by <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, is a graph whose vertices are elements of <span><math><mi>R</mi></math></span> and <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> are adjacent if and only if <span><math><mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow></math></span> is a unit in <span><math><mi>R</mi></math></span>. A ring <span><math><mi>R</mi></math></span> is called a <span><math><mrow><mi>D</mi><mi>U</mi></mrow></math></span>-ring if for any ring <span><math><mi>S</mi></math></span> such that <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>≅</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>, then <span><math><mrow><mi>R</mi><mo>≅</mo><mi>S</mi></mrow></math></span>. In this paper, we study unitary Cayley graphs of finite semisimple rings and show that finite semisimple rings of the form <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>)</mo></mrow><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> are <span><math><mrow><mi>D</mi><mi>U</mi></mrow></math></span>-rings. We achieve this by using the Cartesian skeleton of the graph to show that <span><math><msub><mrow><mi>G</mi></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></mrow></msub></math></span> is prime with respect to the direct product and deduce the result through the uniqueness of graph factorization. In addition, we show that any finite commutative reduced ring is a <span><math><mrow><mi>D</mi><mi>U</mi></mrow></math></span>-ring by combining graph cancellation properties with combinatorial arguments on the eigenvalues of the unitary Cayley graph of finite semisimple rings. The two results imply that if <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> are rings such that <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>≅</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></math></span> does not contain the factor <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> or is a product of fields, then <span><math><mrow><mi>R</mi><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>≅</mo><mi>S</mi><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 87-94"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001799","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite ring with identity . The unitary Cayley graph of , denoted by , is a graph whose vertices are elements of and are adjacent if and only if is a unit in . A ring is called a -ring if for any ring such that , then . In this paper, we study unitary Cayley graphs of finite semisimple rings and show that finite semisimple rings of the form where for all are -rings. We achieve this by using the Cartesian skeleton of the graph to show that is prime with respect to the direct product and deduce the result through the uniqueness of graph factorization. In addition, we show that any finite commutative reduced ring is a -ring by combining graph cancellation properties with combinatorial arguments on the eigenvalues of the unitary Cayley graph of finite semisimple rings. The two results imply that if and are rings such that and does not contain the factor or is a product of fields, then .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.