Unitary Cayley graphs of finite semisimple rings

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Thanatach Tangsakul, Yotsanan Meemark
{"title":"Unitary Cayley graphs of finite semisimple rings","authors":"Thanatach Tangsakul,&nbsp;Yotsanan Meemark","doi":"10.1016/j.dam.2025.04.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>R</mi></math></span> be a finite ring with identity <span><math><mrow><mn>1</mn><mo>≠</mo><mn>0</mn></mrow></math></span>. The <em>unitary Cayley graph</em> of <span><math><mi>R</mi></math></span>, denoted by <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, is a graph whose vertices are elements of <span><math><mi>R</mi></math></span> and <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></math></span> are adjacent if and only if <span><math><mrow><mi>x</mi><mo>−</mo><mi>y</mi></mrow></math></span> is a unit in <span><math><mi>R</mi></math></span>. A ring <span><math><mi>R</mi></math></span> is called a <span><math><mrow><mi>D</mi><mi>U</mi></mrow></math></span>-ring if for any ring <span><math><mi>S</mi></math></span> such that <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>≅</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>, then <span><math><mrow><mi>R</mi><mo>≅</mo><mi>S</mi></mrow></math></span>. In this paper, we study unitary Cayley graphs of finite semisimple rings and show that finite semisimple rings of the form <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>)</mo></mrow><mo>×</mo><mo>⋯</mo><mo>×</mo><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> are <span><math><mrow><mi>D</mi><mi>U</mi></mrow></math></span>-rings. We achieve this by using the Cartesian skeleton of the graph to show that <span><math><msub><mrow><mi>G</mi></mrow><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></mrow></mrow></msub></math></span> is prime with respect to the direct product and deduce the result through the uniqueness of graph factorization. In addition, we show that any finite commutative reduced ring is a <span><math><mrow><mi>D</mi><mi>U</mi></mrow></math></span>-ring by combining graph cancellation properties with combinatorial arguments on the eigenvalues of the unitary Cayley graph of finite semisimple rings. The two results imply that if <span><math><mi>R</mi></math></span> and <span><math><mi>S</mi></math></span> are rings such that <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>≅</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>R</mi><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>R</mi></mrow></msub></mrow></math></span> does not contain the factor <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> or is a product of fields, then <span><math><mrow><mi>R</mi><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>≅</mo><mi>S</mi><mo>/</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 87-94"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001799","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a finite ring with identity 10. The unitary Cayley graph of R, denoted by GR, is a graph whose vertices are elements of R and x,y are adjacent if and only if xy is a unit in R. A ring R is called a DU-ring if for any ring S such that GRGS, then RS. In this paper, we study unitary Cayley graphs of finite semisimple rings and show that finite semisimple rings of the form Mn1(Fq1)××Mnk(Fqk) where Mni(Fqi)F2 for all i{1,,k} are DU-rings. We achieve this by using the Cartesian skeleton of the graph to show that GMn(Fq) is prime with respect to the direct product and deduce the result through the uniqueness of graph factorization. In addition, we show that any finite commutative reduced ring is a DU-ring by combining graph cancellation properties with combinatorial arguments on the eigenvalues of the unitary Cayley graph of finite semisimple rings. The two results imply that if R and S are rings such that GRGS and R/JR does not contain the factor F2 or is a product of fields, then R/JRS/JS.
有限半单环的酉Cayley图
设R是一个单位元1≠0的有限环。R的酉Cayley图,用GR表示,是一个顶点是R和x,y的元素相邻的图,当且仅当x - y是R中的一个单位时,环R称为du环,如果对于任何环S满足GR = GS,则R = S。在本文中,我们研究了有限半单环的酉Cayley图,并证明了形式为Mn1(Fq1) x⋯×Mnk(Fqk)的有限半单环,其中对于所有i∈{1,…,k}, Mni(Fqi)≠F2是du环。我们利用图的笛卡尔骨架证明了GMn(Fq)对于直积是素数,并通过图分解的唯一性推导出结果。此外,通过结合有限半单环的幺正Cayley图的特征值上的组合参数,证明了任意有限交换约化环是一个du环。这两个结果表明,如果R和S是环,使得GR = GS和R/JR不包含因子F2或R/JR是域的乘积,则R/JR = S/JS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信