Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance

Q1 Environmental Science
Sathyabama Balaji , Muthu Senthil Pandian , Ramasamy Ganesamoorthy , Thirugnanasambandham Karchiyappan
{"title":"Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance","authors":"Sathyabama Balaji ,&nbsp;Muthu Senthil Pandian ,&nbsp;Ramasamy Ganesamoorthy ,&nbsp;Thirugnanasambandham Karchiyappan","doi":"10.1016/j.enmm.2025.101066","DOIUrl":null,"url":null,"abstract":"<div><div>The green synthesis of metal oxide nanoparticles using plant extracts has emerged as a sustainable and eco-friendly approach to combat antimicrobial resistance. Bio-inspired synthesis is an innovative approach miming natural processes to create advanced materials with unique properties. This method leverages biological principles and templates to guide the synthesis of nanoparticles, polymers, and other materials. The resulting materials often exhibit enhanced performance, biocompatibility, and sustainability. This method leverages the natural reducing, capping, and stabilizing agents found in plant extracts to synthesize nanoparticles, avoiding the use of hazardous chemicals. This study explores the bio-inspired synthesis of metallic and non-metallic nanoparticles, focusing on their potential application bio-inspireds in various fields, including medicine, energy storage, and environmental remediation. By understanding and replicating nature’s strategies, bio-inspired synthesis offers a promising pathway to develop next-generation materials with improved functionality and reduced environmental impact. The development of nanoparticles (NPs) having antibacterial action, like metal oxide nanoparticles (MONPs), is made possible by nanotechnology. Because MONPs can interact with multiple biological components and suppress microbial growth, they offer a potential solution to overcome pathogenicity or antimicrobial resistance. The overview of the review provides burgeoning research surrounding the green synthesis of different nanoparticles utilizing various plant extracts. It provides the antimicrobial efficacy of nanoparticles, including zinc oxide (ZnO), titanium dioxide (TiO<sub>2</sub>), iron oxide (FeO), copper oxide (CuO), and nickel oxide (NiO), at different concentrations against different bacterial strains. Furthermore, the mechanism underlying the antimicrobial activity of these nanoparticles was discussed. The findings underscore the importance of sustainable nanotechnology in developing effective antimicrobial agents and promoting environmental sustainability.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101066"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The green synthesis of metal oxide nanoparticles using plant extracts has emerged as a sustainable and eco-friendly approach to combat antimicrobial resistance. Bio-inspired synthesis is an innovative approach miming natural processes to create advanced materials with unique properties. This method leverages biological principles and templates to guide the synthesis of nanoparticles, polymers, and other materials. The resulting materials often exhibit enhanced performance, biocompatibility, and sustainability. This method leverages the natural reducing, capping, and stabilizing agents found in plant extracts to synthesize nanoparticles, avoiding the use of hazardous chemicals. This study explores the bio-inspired synthesis of metallic and non-metallic nanoparticles, focusing on their potential application bio-inspireds in various fields, including medicine, energy storage, and environmental remediation. By understanding and replicating nature’s strategies, bio-inspired synthesis offers a promising pathway to develop next-generation materials with improved functionality and reduced environmental impact. The development of nanoparticles (NPs) having antibacterial action, like metal oxide nanoparticles (MONPs), is made possible by nanotechnology. Because MONPs can interact with multiple biological components and suppress microbial growth, they offer a potential solution to overcome pathogenicity or antimicrobial resistance. The overview of the review provides burgeoning research surrounding the green synthesis of different nanoparticles utilizing various plant extracts. It provides the antimicrobial efficacy of nanoparticles, including zinc oxide (ZnO), titanium dioxide (TiO2), iron oxide (FeO), copper oxide (CuO), and nickel oxide (NiO), at different concentrations against different bacterial strains. Furthermore, the mechanism underlying the antimicrobial activity of these nanoparticles was discussed. The findings underscore the importance of sustainable nanotechnology in developing effective antimicrobial agents and promoting environmental sustainability.

Abstract Image

利用植物提取物绿色合成金属氧化物纳米颗粒:对抗抗菌素耐药性的可持续方法
利用植物提取物绿色合成金属氧化物纳米粒子已成为一种可持续的生态友好型抗菌方法。生物启发合成是一种模仿自然过程的创新方法,用于制造具有独特性能的先进材料。这种方法利用生物原理和模板来指导纳米粒子、聚合物和其他材料的合成。合成的材料通常具有更高的性能、生物相容性和可持续性。这种方法利用植物提取物中的天然还原剂、封盖剂和稳定剂合成纳米粒子,避免了有害化学物质的使用。本研究探讨了受生物启发合成金属和非金属纳米粒子的方法,重点关注生物启发在医药、能源储存和环境修复等多个领域的潜在应用。通过理解和复制自然界的策略,生物启发合成为开发功能更强、环境影响更小的下一代材料提供了一条前景广阔的途径。纳米技术使具有抗菌作用的纳米粒子(NPs)(如金属氧化物纳米粒子(MONPs))的开发成为可能。由于 MONPs 可与多种生物成分相互作用并抑制微生物生长,因此为克服致病性或抗菌药耐药性提供了潜在的解决方案。综述介绍了围绕利用各种植物提取物绿色合成不同纳米粒子的新兴研究。综述介绍了不同浓度的纳米粒子(包括氧化锌(ZnO)、二氧化钛(TiO2)、氧化铁(FeO)、氧化铜(CuO)和氧化镍(NiO))对不同细菌菌株的抗菌功效。此外,还讨论了这些纳米粒子的抗菌活性机理。研究结果强调了可持续纳米技术在开发有效抗菌剂和促进环境可持续性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信