Copiloting the future: How generative AI transforms Software Engineering

IF 3.8 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Leonardo Banh , Florian Holldack , Gero Strobel
{"title":"Copiloting the future: How generative AI transforms Software Engineering","authors":"Leonardo Banh ,&nbsp;Florian Holldack ,&nbsp;Gero Strobel","doi":"10.1016/j.infsof.2025.107751","DOIUrl":null,"url":null,"abstract":"<div><h3><strong>Context</strong></h3><div>With rapid technological advancements, artificial intelligence (AI) has become integral to various sectors. Generative AI (GenAI) tools like ChatGPT or GitHub Copilot, with their unique content creation capabilities, pose transformative potential in Software Engineering by offering new ways to optimize software development processes. However, the integration into current processes also presents challenges that require a sociotechnical analysis to effectively realize GenAI's potential.</div></div><div><h3><strong>Objective</strong></h3><div>This study investigates how GenAI can be leveraged in the domain of Software Engineering, exploring its action potentials and challenges to help businesses and developers optimize the adoption of this technology in their workflows.</div></div><div><h3><strong>Method</strong></h3><div>We performed a qualitative study and collected data from expert interviews with eighteen professionals working in Software Engineering-related roles. Data analysis followed the principles of Grounded Theory to analyze how GenAI supports developers' goals, aligns with organizational practices, and facilitates integration into existing routines.</div></div><div><h3><strong>Results</strong></h3><div>The findings demonstrate several opportunities of GenAI in Software Engineering to increase productivity in development teams. However, several key barriers were also identified, that should be accounted for in successful integrations. We synthesize the results in a grounded conceptual framework for GenAI adoption in Software Engineering.</div></div><div><h3><strong>Conclusions</strong></h3><div>This study contributes to the discourse on GenAI in Software Engineering by providing a conceptual framework that aids in understanding the opportunities and challenges of GenAI. It offers practical guidelines for businesses and developers to enhance GenAI integration and lays the groundwork for future research on its impact in software development.</div></div>","PeriodicalId":54983,"journal":{"name":"Information and Software Technology","volume":"183 ","pages":"Article 107751"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Software Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950584925000904","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Context

With rapid technological advancements, artificial intelligence (AI) has become integral to various sectors. Generative AI (GenAI) tools like ChatGPT or GitHub Copilot, with their unique content creation capabilities, pose transformative potential in Software Engineering by offering new ways to optimize software development processes. However, the integration into current processes also presents challenges that require a sociotechnical analysis to effectively realize GenAI's potential.

Objective

This study investigates how GenAI can be leveraged in the domain of Software Engineering, exploring its action potentials and challenges to help businesses and developers optimize the adoption of this technology in their workflows.

Method

We performed a qualitative study and collected data from expert interviews with eighteen professionals working in Software Engineering-related roles. Data analysis followed the principles of Grounded Theory to analyze how GenAI supports developers' goals, aligns with organizational practices, and facilitates integration into existing routines.

Results

The findings demonstrate several opportunities of GenAI in Software Engineering to increase productivity in development teams. However, several key barriers were also identified, that should be accounted for in successful integrations. We synthesize the results in a grounded conceptual framework for GenAI adoption in Software Engineering.

Conclusions

This study contributes to the discourse on GenAI in Software Engineering by providing a conceptual framework that aids in understanding the opportunities and challenges of GenAI. It offers practical guidelines for businesses and developers to enhance GenAI integration and lays the groundwork for future research on its impact in software development.
共引未来:生成式人工智能如何改变软件工程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Software Technology
Information and Software Technology 工程技术-计算机:软件工程
CiteScore
9.10
自引率
7.70%
发文量
164
审稿时长
9.6 weeks
期刊介绍: Information and Software Technology is the international archival journal focusing on research and experience that contributes to the improvement of software development practices. The journal''s scope includes methods and techniques to better engineer software and manage its development. Articles submitted for review should have a clear component of software engineering or address ways to improve the engineering and management of software development. Areas covered by the journal include: • Software management, quality and metrics, • Software processes, • Software architecture, modelling, specification, design and programming • Functional and non-functional software requirements • Software testing and verification & validation • Empirical studies of all aspects of engineering and managing software development Short Communications is a new section dedicated to short papers addressing new ideas, controversial opinions, "Negative" results and much more. Read the Guide for authors for more information. The journal encourages and welcomes submissions of systematic literature studies (reviews and maps) within the scope of the journal. Information and Software Technology is the premiere outlet for systematic literature studies in software engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信