Compact CNN module balancing between feature diversity and redundancy

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huihuang Zhang, Haigen Hu, Deming Zhou, Xiaoqin Zhang, Bin Cao
{"title":"Compact CNN module balancing between feature diversity and redundancy","authors":"Huihuang Zhang,&nbsp;Haigen Hu,&nbsp;Deming Zhou,&nbsp;Xiaoqin Zhang,&nbsp;Bin Cao","doi":"10.1016/j.neunet.2025.107456","DOIUrl":null,"url":null,"abstract":"<div><div>Feature diversity and redundancy play a crucial role in enhancing a model’s performance, although their effect on network design remains underexplored. Herein, we introduce BDRConv, a compact convolutional neural network (CNN) module that establishes a balance between feature diversity and redundancy to generate and retain features with moderate redundancy and high diversity while reducing computational costs. Specifically, input features are divided into a main part and an expansion part. The main part extracts intrinsic and diverse features, while the expansion part enhances diverse information extraction. Experiments on the CIFAR10, ImageNet, and MS COCO datasets demonstrate that BDRConv-equipped networks outperform state-of-the-art methods in accuracy, with significantly lower floating-point operations (FLOPs) and parameters. In addition, BDRConv module as a plug-and-play component can easily replace existing convolution modules, offering potential for broader CNN applications.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107456"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003351","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Feature diversity and redundancy play a crucial role in enhancing a model’s performance, although their effect on network design remains underexplored. Herein, we introduce BDRConv, a compact convolutional neural network (CNN) module that establishes a balance between feature diversity and redundancy to generate and retain features with moderate redundancy and high diversity while reducing computational costs. Specifically, input features are divided into a main part and an expansion part. The main part extracts intrinsic and diverse features, while the expansion part enhances diverse information extraction. Experiments on the CIFAR10, ImageNet, and MS COCO datasets demonstrate that BDRConv-equipped networks outperform state-of-the-art methods in accuracy, with significantly lower floating-point operations (FLOPs) and parameters. In addition, BDRConv module as a plug-and-play component can easily replace existing convolution modules, offering potential for broader CNN applications.
兼顾功能多样性和冗余性的紧凑型 CNN 模块
特征多样性和冗余在提高模型性能方面起着至关重要的作用,尽管它们对网络设计的影响尚未得到充分探讨。在此,我们引入了一种紧凑的卷积神经网络(CNN)模块BDRConv,它在特征多样性和冗余之间建立了平衡,以生成和保留适度冗余和高多样性的特征,同时降低了计算成本。具体来说,输入特征分为主要部分和扩展部分。主体部分提取内在的和多样化的特征,扩展部分增强多样化的信息提取。在CIFAR10、ImageNet和MS COCO数据集上的实验表明,配备bdrconvv的网络在精度上优于最先进的方法,浮点运算(FLOPs)和参数显著降低。此外,BDRConv模块作为即插即用组件可以轻松取代现有的卷积模块,为更广泛的CNN应用提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信