A prompt regularization approach to enhance few-shot class-incremental learning with Two-Stage Classifier

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Meilan Hao , Yizhan Gu , Kejian Dong , Prayag Tiwari , Xiaoqing Lv , Xin Ning
{"title":"A prompt regularization approach to enhance few-shot class-incremental learning with Two-Stage Classifier","authors":"Meilan Hao ,&nbsp;Yizhan Gu ,&nbsp;Kejian Dong ,&nbsp;Prayag Tiwari ,&nbsp;Xiaoqing Lv ,&nbsp;Xin Ning","doi":"10.1016/j.neunet.2025.107453","DOIUrl":null,"url":null,"abstract":"<div><div>With a limited number of labeled samples, Few-Shot Class-Incremental Learning (FSCIL) seeks to efficiently train and update models without forgetting previously learned tasks. Because pre-trained models can learn extensive feature representations from big existing datasets, they offer strong knowledge foundations and transferability, which makes them useful in both few-shot and incremental learning scenarios. Additionally, Prompt Learning improves pre-trained deep learning models’ performance on downstream tasks, particularly in large-scale language or vision models. In this paper, we propose a novel Prompt Regularization (PrRe) approach to maximize the fusion of prompts by embedding two different prompts, the Task Prompt and the Global Prompt, inside a pre-trained Vision Transformer (ViT). In the classification phase, we propose a Two-Stage Classifier (TSC), utilizing K-Nearest Neighbors for base session and a Prototype Classifier for incremental sessions, integrated with a global self-attention module. Through experiments on multiple benchmark tests, we demonstrate the effectiveness and superiority of our method. The code is available at <span><span>https://github.com/gyzzzzzzzz/PrRe</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107453"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003326","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With a limited number of labeled samples, Few-Shot Class-Incremental Learning (FSCIL) seeks to efficiently train and update models without forgetting previously learned tasks. Because pre-trained models can learn extensive feature representations from big existing datasets, they offer strong knowledge foundations and transferability, which makes them useful in both few-shot and incremental learning scenarios. Additionally, Prompt Learning improves pre-trained deep learning models’ performance on downstream tasks, particularly in large-scale language or vision models. In this paper, we propose a novel Prompt Regularization (PrRe) approach to maximize the fusion of prompts by embedding two different prompts, the Task Prompt and the Global Prompt, inside a pre-trained Vision Transformer (ViT). In the classification phase, we propose a Two-Stage Classifier (TSC), utilizing K-Nearest Neighbors for base session and a Prototype Classifier for incremental sessions, integrated with a global self-attention module. Through experiments on multiple benchmark tests, we demonstrate the effectiveness and superiority of our method. The code is available at https://github.com/gyzzzzzzzz/PrRe.
一种快速正则化方法增强两阶段分类器的少次类增量学习
使用有限数量的标记样本,少射类增量学习(FSCIL)寻求有效地训练和更新模型,而不会忘记以前学习的任务。由于预训练模型可以从大型现有数据集中学习广泛的特征表示,因此它们提供了强大的知识基础和可转移性,这使得它们在少量和增量学习场景中都很有用。此外,提示学习提高了预先训练的深度学习模型在下游任务中的表现,特别是在大规模语言或视觉模型中。在本文中,我们提出了一种新的提示正则化(PrRe)方法,通过在预训练的视觉转换器(ViT)中嵌入任务提示和全局提示两种不同的提示来最大化提示的融合。在分类阶段,我们提出了一个两阶段分类器(TSC),对基本会话使用k近邻,对增量会话使用原型分类器,并集成了一个全局自关注模块。通过多个基准测试的实验,证明了该方法的有效性和优越性。代码可在https://github.com/gyzzzzzzzz/PrRe上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信