Amany A. Alzokaky , Shimaa K. Saber , Mennatallah O. Zaki
{"title":"The reno-protective effect of Empagliflozin against carbon tetrachloride (CCl4)-induced nephrotoxicity in mice halting JNK/MKK4/NRF2/NF-KB pathway","authors":"Amany A. Alzokaky , Shimaa K. Saber , Mennatallah O. Zaki","doi":"10.1016/j.fct.2025.115439","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><div>This study designed to evaluate the reno-protective effects of Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, against carbon tetrachloride (CCl4)-induced nephrotoxicity in mice targeting JNK/MKK4/NRF2/NF-KB pathway.</div></div><div><h3>Methods</h3><div>Male albino mice were given EMPA (10 mg/kg, orally) for 4 weeks prior to a single i.p. injection of 10 % CCl4 (20 ml/kg). Mice were sacrificed 48 h post CCl4 injection.</div></div><div><h3>Key findings</h3><div>EMPA attenuated CCl4-induced renal injury, as reflected by a decrease in serum urea and creatinine levels, also preserved the histological integrity of kidney tissue. Theses reno-protective effects of EMPA can be mainly due to its <strong>1.</strong> Antioxidant, (↑CAT, ↑SOD, ↑Nrf-2 and ↑ARE), <strong>2.</strong> Anti-inflammatory (↓NF-κB and ↓TNF-α) and <strong>3.</strong> Anti-apoptotic (↓Caspase-3) proprieties. EMPA also inhibited JNK/MKK4 signaling pathway, which plays a critical role in kidney damage.</div></div><div><h3>Conclusion</h3><div>These finding confirm the reno-protective effect of EMPA with a modulatory impact on JNK/MKK4/Nrf2/NF-κB signaling network; suggesting its therapeutic utility to minimize acute kidney injury (AKI) in clinical setting in the future.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"201 ","pages":"Article 115439"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525002078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
This study designed to evaluate the reno-protective effects of Empagliflozin (EMPA), a sodium-glucose co-transporter 2 (SGLT2) inhibitor, against carbon tetrachloride (CCl4)-induced nephrotoxicity in mice targeting JNK/MKK4/NRF2/NF-KB pathway.
Methods
Male albino mice were given EMPA (10 mg/kg, orally) for 4 weeks prior to a single i.p. injection of 10 % CCl4 (20 ml/kg). Mice were sacrificed 48 h post CCl4 injection.
Key findings
EMPA attenuated CCl4-induced renal injury, as reflected by a decrease in serum urea and creatinine levels, also preserved the histological integrity of kidney tissue. Theses reno-protective effects of EMPA can be mainly due to its 1. Antioxidant, (↑CAT, ↑SOD, ↑Nrf-2 and ↑ARE), 2. Anti-inflammatory (↓NF-κB and ↓TNF-α) and 3. Anti-apoptotic (↓Caspase-3) proprieties. EMPA also inhibited JNK/MKK4 signaling pathway, which plays a critical role in kidney damage.
Conclusion
These finding confirm the reno-protective effect of EMPA with a modulatory impact on JNK/MKK4/Nrf2/NF-κB signaling network; suggesting its therapeutic utility to minimize acute kidney injury (AKI) in clinical setting in the future.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.