Transcript-activated collagen matrix for enhanced bone marrow stem cell differentiation and osteochondral repair

Q1 Medicine
Gang Zhong , Yixuan Luo , Meng Wang , Zhengran Yu , Xuenong Zou , Gang Wang , Fei Chen , Yin Yu
{"title":"Transcript-activated collagen matrix for enhanced bone marrow stem cell differentiation and osteochondral repair","authors":"Gang Zhong ,&nbsp;Yixuan Luo ,&nbsp;Meng Wang ,&nbsp;Zhengran Yu ,&nbsp;Xuenong Zou ,&nbsp;Gang Wang ,&nbsp;Fei Chen ,&nbsp;Yin Yu","doi":"10.1016/j.engreg.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>The regeneration of critical-sized osteochondral defects remains a significant challenge due to the limited self-healing capacity of cartilage. Traditional approaches, such as autologous chondrocyte implantation (ACI) and matrix-induced autologous chondrocyte implantation (MACI), have shown promise but are limited by issues like insufficient cell availability, dedifferentiation of chondrocytes during expansion, and the formation of fibrocartilage rather than functional hyaline cartilage. This study presents a promising approach utilizing transcript-activated matrices (TAMs) with mRNA to enhance the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) in situ. Chemically modified mRNA (cmRNA) encoding transforming growth factor β3 (TGF-β3) was encapsulated in a collagen hydrogel to provide localized, sustained delivery of chondrogenic signals. In a rat model of critical-sized osteochondral defects, this strategy significantly promoted cartilage regeneration, achieving structural and molecular restoration within six weeks. Histological and biochemical analyses revealed robust chondrogenesis, enhanced extracellular matrix deposition, and superior mechanical properties. Moreover, TAM therapy maintained subchondral bone integrity This work highlights the transformative potential of mRNA-activated matrices as a platform technology that not only addresses key limitations of existing cartilage repair strategies but also provides a biomimetic microenvironment that guides stem cell differentiation and tissue regeneration.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"6 1","pages":"Pages 111-120"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138125000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The regeneration of critical-sized osteochondral defects remains a significant challenge due to the limited self-healing capacity of cartilage. Traditional approaches, such as autologous chondrocyte implantation (ACI) and matrix-induced autologous chondrocyte implantation (MACI), have shown promise but are limited by issues like insufficient cell availability, dedifferentiation of chondrocytes during expansion, and the formation of fibrocartilage rather than functional hyaline cartilage. This study presents a promising approach utilizing transcript-activated matrices (TAMs) with mRNA to enhance the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) in situ. Chemically modified mRNA (cmRNA) encoding transforming growth factor β3 (TGF-β3) was encapsulated in a collagen hydrogel to provide localized, sustained delivery of chondrogenic signals. In a rat model of critical-sized osteochondral defects, this strategy significantly promoted cartilage regeneration, achieving structural and molecular restoration within six weeks. Histological and biochemical analyses revealed robust chondrogenesis, enhanced extracellular matrix deposition, and superior mechanical properties. Moreover, TAM therapy maintained subchondral bone integrity This work highlights the transformative potential of mRNA-activated matrices as a platform technology that not only addresses key limitations of existing cartilage repair strategies but also provides a biomimetic microenvironment that guides stem cell differentiation and tissue regeneration.

Abstract Image

转录活化胶原基质增强骨髓干细胞分化和骨软骨修复
由于软骨的自愈能力有限,骨软骨缺损的再生仍然是一个重大的挑战。传统的方法,如自体软骨细胞植入(ACI)和基质诱导的自体软骨细胞植入(MACI),已经显示出前景,但受到诸如细胞可用性不足、软骨细胞在扩张过程中去分化以及形成纤维软骨而不是功能透明软骨等问题的限制。本研究提出了一种利用mRNA转录激活基质(TAMs)原位增强骨髓间充质干细胞(BMSCs)治疗潜力的有希望的方法。将编码转化生长因子β3 (TGF-β3)的化学修饰mRNA (cmRNA)包裹在胶原水凝胶中,以提供局部、持续的软骨生成信号传递。在大鼠骨软骨缺损模型中,该策略显著促进了软骨再生,在6周内实现了结构和分子的修复。组织学和生化分析显示强健的软骨形成,增强的细胞外基质沉积和优越的力学性能。此外,TAM治疗保持了软骨下骨的完整性。这项工作强调了mrna激活基质作为平台技术的转化潜力,它不仅解决了现有软骨修复策略的关键限制,而且提供了一个引导干细胞分化和组织再生的仿生微环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信