Nava Moghadasian Niaki , Faezeh Hatefnia , Mohammad Mahdi Heidari , Mahsa Tabean , Ahmad Mobed
{"title":"Alpha-Fetoprotein (AFP) biosensors","authors":"Nava Moghadasian Niaki , Faezeh Hatefnia , Mohammad Mahdi Heidari , Mahsa Tabean , Ahmad Mobed","doi":"10.1016/j.cca.2025.120293","DOIUrl":null,"url":null,"abstract":"<div><div>Alpha-fetoprotein (AFP) is a glycoprotein mainly produced during fetal development, and elevated levels in adults are frequently associated with liver diseases, especially hepatocellular carcinoma (HCC), as well as certain germ cell tumors. Measuring AFP in biological samples is crucial for early diagnosis, monitoring disease progression, and evaluating treatment efficacy. While traditional detection methods like enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay are dependable, they often face limitations such as lengthy processes, complexity, and the need for specialized equipment. In recent years, biosensing technologies have emerged as promising alternatives for detecting AFP, offering advantages like increased sensitivity, real-time monitoring, and ease of use. Various biosensing platforms, including electrochemical, optical, and piezoelectric sensors, have been developed to enable quick and specific detection of AFP. These sensors employ molecular recognition elements, such as antibodies, aptamers, or nanoparticles, to selectively bind AFP, producing a measurable signal. This article explores the structure and mechanisms of action of AFP, the diseases linked to it, and describes several biosensing technologies. It also reviews recent advancements in AFP biosensing, discussing their principles, performance, and potential applications in clinical settings. Furthermore, the article highlights the challenges and future prospects for developing cost-effective, portable, and multiplexed AFP biosensors, underscoring their potential to revolutionize early disease detection and personalized healthcare.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"573 ","pages":"Article 120293"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000989812500172X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein mainly produced during fetal development, and elevated levels in adults are frequently associated with liver diseases, especially hepatocellular carcinoma (HCC), as well as certain germ cell tumors. Measuring AFP in biological samples is crucial for early diagnosis, monitoring disease progression, and evaluating treatment efficacy. While traditional detection methods like enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay are dependable, they often face limitations such as lengthy processes, complexity, and the need for specialized equipment. In recent years, biosensing technologies have emerged as promising alternatives for detecting AFP, offering advantages like increased sensitivity, real-time monitoring, and ease of use. Various biosensing platforms, including electrochemical, optical, and piezoelectric sensors, have been developed to enable quick and specific detection of AFP. These sensors employ molecular recognition elements, such as antibodies, aptamers, or nanoparticles, to selectively bind AFP, producing a measurable signal. This article explores the structure and mechanisms of action of AFP, the diseases linked to it, and describes several biosensing technologies. It also reviews recent advancements in AFP biosensing, discussing their principles, performance, and potential applications in clinical settings. Furthermore, the article highlights the challenges and future prospects for developing cost-effective, portable, and multiplexed AFP biosensors, underscoring their potential to revolutionize early disease detection and personalized healthcare.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.