Ming Li , Furong Xu , Yuqin Wu , Jianshan Zhang , Weitao Xu , Yuezhong Wu
{"title":"Real-time task dispatching and scheduling in serverless edge computing","authors":"Ming Li , Furong Xu , Yuqin Wu , Jianshan Zhang , Weitao Xu , Yuezhong Wu","doi":"10.1016/j.adhoc.2025.103854","DOIUrl":null,"url":null,"abstract":"<div><div>Edge computing brings computing resources closer to the Internet of Things (IoT) devices, significantly reducing transmission latency and bandwidth usage. However, the limited resources of edge servers require efficient management. Serverless computing meets this demand through its elastic resource provisioning, leading to the emergence of serverless edge computing—a promising computing paradigm. Despite its potential, real-time task dispatching and scheduling in the highly complex and dynamic environment of serverless edge computing present significant challenges. On the one hand, task execution requires not only sufficient CPU resources but also free containers; on the other hand, tasks are typically event-driven, with strong burstiness and high concurrency, and impose stringent demands on fast decision-making. To address these challenges, we propose a real-time task dispatching and scheduling method, aiming to maximize the satisfaction rate of Service Level Objectives (SLOs) for tasks. First, we design a task dispatching algorithm named Adaptive Deep Reinforcement Learning (ADRL). This algorithm can quickly decide the execution position of tasks based on coarse information and effectively adapt to the changes in available servers in dynamic environments. Second, we propose a task scheduling algorithm named Warm-aware Shortest Remaining Idle Time (WSRIT), which guides the edge servers to schedule the tasks in the request queue based on the tasks’ remaining idle time and the state of the warm containers. Considering the limited storage space of the edge servers, we further introduce a container replacement algorithm named Low Priority First (LPF) to ensure smooth container launches. Extensive simulation experiments are conducted based on Azure datasets. The results show that our methodcan improve the satisfaction rate of SLOs by 12.57<span><math><mo>∼</mo></math></span>41.87% and achieve the lowest cold start rate compared to existing methods.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"174 ","pages":"Article 103854"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525001027","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Edge computing brings computing resources closer to the Internet of Things (IoT) devices, significantly reducing transmission latency and bandwidth usage. However, the limited resources of edge servers require efficient management. Serverless computing meets this demand through its elastic resource provisioning, leading to the emergence of serverless edge computing—a promising computing paradigm. Despite its potential, real-time task dispatching and scheduling in the highly complex and dynamic environment of serverless edge computing present significant challenges. On the one hand, task execution requires not only sufficient CPU resources but also free containers; on the other hand, tasks are typically event-driven, with strong burstiness and high concurrency, and impose stringent demands on fast decision-making. To address these challenges, we propose a real-time task dispatching and scheduling method, aiming to maximize the satisfaction rate of Service Level Objectives (SLOs) for tasks. First, we design a task dispatching algorithm named Adaptive Deep Reinforcement Learning (ADRL). This algorithm can quickly decide the execution position of tasks based on coarse information and effectively adapt to the changes in available servers in dynamic environments. Second, we propose a task scheduling algorithm named Warm-aware Shortest Remaining Idle Time (WSRIT), which guides the edge servers to schedule the tasks in the request queue based on the tasks’ remaining idle time and the state of the warm containers. Considering the limited storage space of the edge servers, we further introduce a container replacement algorithm named Low Priority First (LPF) to ensure smooth container launches. Extensive simulation experiments are conducted based on Azure datasets. The results show that our methodcan improve the satisfaction rate of SLOs by 12.5741.87% and achieve the lowest cold start rate compared to existing methods.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.