PyHTStack2D: A Python package for high-throughput homo/hetero stacking of 2D materials

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Qian Zhang , Jinlong Yang , Wei Hu
{"title":"PyHTStack2D: A Python package for high-throughput homo/hetero stacking of 2D materials","authors":"Qian Zhang ,&nbsp;Jinlong Yang ,&nbsp;Wei Hu","doi":"10.1016/j.cpc.2025.109618","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) van der Waals (vdWs) structures are the subject of extensive research in materials science, celebrated for their unique physical properties and potential technological applications. However, the diversity of stacking modes in 2D vdWs structures poses a challenge for research. In response to the complexity of the stacking process for these layered structures, we have developed a Python package, PyHTStack2D, specifically designed to support High-Throughput Stacking of 2D materials research. The package provides two primary functionalities: Firstly, it facilitates the batch stacking of homo- and heterostructures, with careful consideration of specific sequences and patterns, such as those observed in the 1T/2H phase transitions of transition metal dichalcogenides; Secondly, it aids in the efficient creation of computational directories and the generation of requisite shell scripts for the batch computation submissions of the stacked structures. By employing this package, we performed high-throughput computational simulations of properties such as electronic energy band structures and magnetic ground states of bilayers composed of 2H-TMDHs. These results have enabled us to identify the types of electronic band structures within these systems, providing critical insights into their potential applications in optoelectronics and photocatalysis. Furthermore, preliminary findings indicate the potential feasibility of generating bipolar magnetic semiconductors via the stacking of magnetic monolayers. The PyHTStack2D package provides an opportunity to perform efficient high-throughput calculations of 2D vdWs homo/heterostructures.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"312 ","pages":"Article 109618"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) van der Waals (vdWs) structures are the subject of extensive research in materials science, celebrated for their unique physical properties and potential technological applications. However, the diversity of stacking modes in 2D vdWs structures poses a challenge for research. In response to the complexity of the stacking process for these layered structures, we have developed a Python package, PyHTStack2D, specifically designed to support High-Throughput Stacking of 2D materials research. The package provides two primary functionalities: Firstly, it facilitates the batch stacking of homo- and heterostructures, with careful consideration of specific sequences and patterns, such as those observed in the 1T/2H phase transitions of transition metal dichalcogenides; Secondly, it aids in the efficient creation of computational directories and the generation of requisite shell scripts for the batch computation submissions of the stacked structures. By employing this package, we performed high-throughput computational simulations of properties such as electronic energy band structures and magnetic ground states of bilayers composed of 2H-TMDHs. These results have enabled us to identify the types of electronic band structures within these systems, providing critical insights into their potential applications in optoelectronics and photocatalysis. Furthermore, preliminary findings indicate the potential feasibility of generating bipolar magnetic semiconductors via the stacking of magnetic monolayers. The PyHTStack2D package provides an opportunity to perform efficient high-throughput calculations of 2D vdWs homo/heterostructures.
PyHTStack2D:用于二维材料高通量同向/异向堆积的 Python 软件包
二维(2D)范德华(vdWs)结构是材料科学中广泛研究的主题,以其独特的物理性质和潜在的技术应用而闻名。然而,二维vdWs结构中堆叠模式的多样性给研究带来了挑战。为了应对这些层状结构堆叠过程的复杂性,我们开发了一个Python包PyHTStack2D,专门用于支持二维材料的高通量堆叠研究。该封装提供了两个主要功能:首先,它促进了同源和异质结构的批量堆叠,并仔细考虑了特定的序列和模式,例如在过渡金属二硫族化合物的1T/2H相变中观察到的那些;其次,它有助于有效地创建计算目录和生成所需的shell脚本,用于堆栈结构的批量计算提交。通过使用该包,我们对由2H-TMDHs组成的双层的电子能带结构和磁基态等性质进行了高通量的计算模拟。这些结果使我们能够识别这些系统中的电子能带结构类型,为其在光电子学和光催化中的潜在应用提供关键见解。此外,初步研究结果表明,通过磁性单层层的堆叠产生双极磁性半导体的潜在可行性。PyHTStack2D包提供了执行2D vdWs同质/异质结构的高效高通量计算的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信