{"title":"Simultaneous trifunctional group passivation using imidazole derivatives for enhanced performance of perovskite solar cells","authors":"Jun Yang , Qiaoli Niu , Yuqing Chen , Baoxiang Chai , Junhao Xiong , Wenjin Zeng , Xinwen Peng , Emmanuel Iwuoha , Ruidong Xia","doi":"10.1016/j.synthmet.2025.117872","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) are one of the most promising energy technologies in the field of renewable energy. The solution-based perovskite film-forming method is one of its important advantages in commercialization. However, the polycrystalline perovskite thin films prepared by this method may also exhibit various defects, leading to a decrease in device performance. In this work, an imidazole derivative 1-(2-hydroxyethyl)-3-methylimidazolium chloride (HMCl) was used as a passivator for perovskite thin films. The imidazole moiety and hydroxyl in HMCl passivated the negatively charged I<sup>-</sup> and positively Pb<sup>2+</sup> defects in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>), respectively. Meanwhile the chloride ion establishes ionic bonds with uncoordinated Pb<sup>2+</sup>, further enhancing the passivation of defects. With HMCl, the PCE of the PSC was enhanced from 17.53 % of the control device to 19.71 %. In addition, the introduction of HMCl enhanced the hydrophobicity of perovskite films, and therefore, improved the storage stability of PSCs. This study provides an alternative passivator for the development of high-performance and long-term stable PSCs.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"312 ","pages":"Article 117872"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677925000487","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) are one of the most promising energy technologies in the field of renewable energy. The solution-based perovskite film-forming method is one of its important advantages in commercialization. However, the polycrystalline perovskite thin films prepared by this method may also exhibit various defects, leading to a decrease in device performance. In this work, an imidazole derivative 1-(2-hydroxyethyl)-3-methylimidazolium chloride (HMCl) was used as a passivator for perovskite thin films. The imidazole moiety and hydroxyl in HMCl passivated the negatively charged I- and positively Pb2+ defects in CH3NH3PbI3 (MAPbI3), respectively. Meanwhile the chloride ion establishes ionic bonds with uncoordinated Pb2+, further enhancing the passivation of defects. With HMCl, the PCE of the PSC was enhanced from 17.53 % of the control device to 19.71 %. In addition, the introduction of HMCl enhanced the hydrophobicity of perovskite films, and therefore, improved the storage stability of PSCs. This study provides an alternative passivator for the development of high-performance and long-term stable PSCs.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.